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Abstract. Non-trivial, consistent interactions of a free, massless tensor field tµν|αβ with the mixed symmetry
of the Riemann tensor are studied in the following cases: self-couplings, cross-interactions with a Pauli–Fierz
field and cross-couplings with purely matter theories. The main results, obtained from BRST cohomological
techniques under the assumptions of smoothness, locality, Lorentz covariance and Poincaré invariance of
the deformations, combined with the requirement that the interacting Lagrangian is at most second-
order derivative, can be synthesized into the following results: no consistent self-couplings exist, but
a cosmological-like term; no cross-interactions with the Pauli–Fierz field can be added; no non-trivial
consistent cross-couplings with the matter theories such that the matter fields gain gauge transformations
are allowed.

1 Introduction

Mixed symmetry type tensor fields [1–5] are involved in
many physically interesting theories, like superstrings, su-
pergravities or supersymmetric high spin theories. The
study of gauge theories with mixed symmetry type ten-
sor fields revealed several issues, like the dual formulation
of field theories of spin two or higher [6–11], the impossibil-
ity of consistent cross-interactions in the dual formulation
of linearized gravity [12] or a Lagrangian first-order ap-
proach [13,14] to some classes of free massless mixed sym-
metry type tensor gauge fields, suggestively resembling the
tetrad formalism of general relativity. One of the most im-
portant aspects related to this type of gauge models is the
analysis of their consistent interactions, among themselves,
as well as with higher-spin gauge theories [15–19]. The best
approach to this matter is the cohomological one, based on
the deformation of the solution to the master equation [20].
The aim of our paper is to investigate the manifestly covari-
ant consistent interactions involving a single, free, massless
tensor gauge field tµν|αβ , with the mixed symmetry of the
Riemann tensor, in three distinct situations: self-couplings,
interactions with the massless spin-two field (described in
the free limit by the Pauli–Fierz action [21]), and couplings
with purely matter theories.

Our procedure relies on the deformation of the solu-
tion to the master equation by means of local BRST co-

a e-mail: bizdadea@central.ucv.ro
b e-mail: ciobarca@central.ucv.ro
c e-mail: manache@central.ucv.ro
d e-mail: osaliu@central.ucv.ro
e e-mail: scsararu@central.ucv.ro

homology. For each situation, we initially determine the
associated free antifield-BRST symmetry s, which splits
as the sum between the Koszul–Tate differential and the
exterior longitudinal derivative only, s = δ + γ. Then we
solve the basic equations of the deformation procedure.
Under the supplementary assumptions of smoothness, lo-
cality, Lorentz covariance and Poincaré invariance of the
deformations, as well as of the maximum derivative order
of the interacting Lagrangian being equal to two, we prove
the following no-go results:
(i) the self-interactions of the tensor field with the mixed
symmetry of the Riemann tensor do not modify either the
original gauge algebra or the gauge transformations and,
in fact, reduce to a cosmological-like term;
(ii) there are no consistent cross-interactions between such
a tensor field and the Pauli–Fierz model. Only the Pauli–
Fierz theory leads to consistent self-interactions, described
by the Einstein–Hilbert action with a cosmological term,
invariant under diffeomorphisms;
(iii) there are no couplings with purely matter theories such
that the matter fields become endowed with gauge trans-
formations.

This paper is organized in eight sections. Section 2 is
dedicated to the Lagrangian formulation of the free mass-
less tensor gauge fieldwithmixed symmetry of theRiemann
tensor, emphasizing its relationship with the generalized
3-differential complex. In Sect. 3 we construct the associ-
ated BRST symmetry and in Sect. 4 we briefly review the
antifield-BRSTdeformationprocedure.The following three
sections represent the core of the paper and respectively
address the problem of self-interactions, interactions with
the Pauli–Fierz field, and couplings with purely matter
fields. Section 8 ends the paper with the main conclusions.
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2 Free model

2.1 Field equations and gauge transformations

The starting point is given by the free Lagrangian action
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) (
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in aMinkowski-flat spacetime of dimensionD ≥ 5, endowed
with a metric tensor of “mostly plus” signature σµν =
σµν = (−+ + + + . . .). The massless tensor field tµν|αβ

of degree four has the mixed symmetry of the linearized
Riemann tensor, and hence transforms according to an
irreducible representation of GL (D,R), corresponding to
a rectangular Young diagram (2, 2) with two columns and
two rows, so it is separately antisymmetric in the pairs
{µ, ν } and {α, β }, is symmetric under the interchange
of these pairs ({µ, ν } ←→ {α, β }), tµν|αβ = tαβ|µν , and
satisfies the identity

t[µν|α]β ≡ 0 (2)

associated with the above diagram, which we will refer to
as the Bianchi I identity. Here and in the sequel the symbol
[µν . . .] denotes the operation of antisymmetrization with
respect to the indices between brackets, without normaliza-
tion factors. (For instance, the left-hand side of (2) contains
only the three terms t[µν|α]β = tµν|αβ + tνα|µβ + tαµ|νβ .)
The notation tνβ signifies the simple trace of the original
tensor field, which is symmetric, tνβ = σµαtµν|αβ , while t
denotes its double trace, which is a scalar, t = σνβtνβ . A
generating set of gauge transformations for the action (1)
reads

δεtµν|αβ = ∂µεαβ|ν − ∂νεαβ|µ + ∂αεµν|β − ∂βεµν|α, (3)

with the bosonic gauge parameters εµν|α transforming ac-
cording to an irreducible representation of GL (D,R), cor-
responding to a Young diagram (2, 1) with two columns
and two rows, being therefore antisymmetric in the pair
{µ, ν } and satisfying the identity

ε[µν|α] ≡ 0. (4)

The identity (4) is required in order to ensure that the gauge
transformations (3) obey the same Bianchi I identity as the
fields themselves, namely, δεt[µν|α]β ≡ 0. The above gener-
ating set of gauge transformations is abelian and off-shell
first-stage reducible since if we make the transformation

εµν|α = 2∂αθµν − ∂[µθν]α, (5)

with θµν an arbitrary antisymmetric tensor (θµν = −θνµ),
then the gauge transformations of the tensor field iden-
tically vanish, δεtµν|αβ ≡ 0. In the meantime, the trans-
formation (5) agrees with the identity (4) obeyed by the
gauge parameters.

The field equations resulting from the action (1) take
the form

δS0

δtµν|αβ
≡ − 1

4
Tµν|αβ ≈ 0, (6)

where
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)
. (7)

Obviously, the tensor Tµν|αβ displays the same mixed sym-
metry properties as the tensor field tµν|αβ . It is useful to
compute its simple and double traces

σµαTµν|αβ

≡ Tνβ = (4−D)
(

1
2
∂λ∂ρ

(
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)
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σνβTνβ

≡ T = − (4−D) (3−D)
(
∂λ∂ρtλρ − 1

2
�t

)
. (9)

Obviously, its simple trace is a symmetric tensor, while
its double trace is a scalar. The gauge invariance of the
Lagrangian action (1) under the transformations (3) is
equivalent to the fact that the functions defining the field
equations are not all independent, but rather obey the
Noether identities

∂µ δS0

δtµν|αβ
≡ − 1

4
∂µTµν|αβ = 0, (10)

while the first-stage reducibility shows that not all of the
above Noether identities are independent. It can be checked
that the functions (7) defining the field equations, the gauge



C. Bizdadea et al.: Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor 255

generators, as well as the first-order reducibility functions,
satisfy the general regularity assumptions from [22], such
that the model under discussion is described by a normal
gauge theory of Cauchy order equal to three.

2.2 Interpretation via the generalized 3-complex

This model describes a free gauge theory that can be in-
terpreted in a consistent manner in terms of the general-
ized differential complex [23] Ω2 (M) of tensor fields with
mixed symmetries corresponding to a maximal sequence of
Young diagrams with two columns, defined on a pseudo-
Riemannian manifold M of dimension D. Let us denote
by d̄ the associated operator (3-differential) that is third-
order nilpotent, d̄3 = 0, and by Ωp

2 (M) the vector space
spanned by the tensor fields from Ω2 (M) with p entries.
The action of d̄ on an element pertaining toΩp

2 (M) results
in a tensor from Ωp+1

2 (M) with one spacetime derivative,
the action of d̄2 on a similar element leads to a tensor from
Ωp+2

2 (M) containing two spacetime derivatives, while the
action of d̄3 on any such element identically vanishes. In
brief, the generalized 3-complex Ω2 (M) may suggestively
be represented through the commutative diagram

. . .
d̄2

↗
Ω8

2
d̄→ . . .

d̄2

↗ ↑d̄
Ω6

2
d̄→ Ω7

2
d̄2

↗ ↑d̄
Ω4

2
d̄→ Ω5

2
d̄2

↗ ↑d̄
Ω2

2
d̄→ Ω3

2
d̄2

↗ ↑d̄
Ω0

2
d̄→ Ω1

2

where the third-order nilpotency of d̄ means that any ver-
tical arrow followed by the closest higher diagonal arrow
maps to zero, and the same with respect to any diago-
nal arrow followed by the closest higher horizontal one.
Its bold part emphasizes the sequences that apply to the
model under discussion: the first one governs the dynamics
and indicates the presence of some gauge symmetry

Ω4
2

field
tµν|αβ

d̄2

→
Ω6

2

curvature
Fµνλ|αβγ

d̄→
Ω7

2

Bianchi II,
∂[ρFµνλ]|αβγ = 0

(11)

while the second sequence solves the gauge symmetry

Ω3
2

gauge param.
εαβ|µ

d̄→
Ω4

2

gauge transf.
δεtµν|αβ

d̄2

→
Ω6

2

gauge inv. objects.
δεFµνλ|αβγ = 0

(12)

Let us discuss the previous sequences. Starting from the
tensor field tµν|αβ from Ω4

2 , we can construct its curvature
tensor Fµνλ|αβγ , defined via(
d̄2t
)
µνλαβγ

∼ (13)

Fµνλ|αβγ = ∂λ∂γtµν|αβ + ∂µ∂γtνλ|αβ + ∂ν∂γtλµ|αβ

+∂λ∂αtµν|βγ + ∂µ∂αtνλ|βγ + ∂ν∂αtλµ|βγ

+∂λ∂βtµν|γα + ∂µ∂βtνλ|γα + ∂ν∂βtλµ|γα,

which is second order in the spacetime derivatives and
belongs to Ω6

2 . Thus, the curvature tensor transforms in
an irreducible representation of GL (D,R) and exhibits
the symmetries of a rectangular two-column Young di-
agram (3, 3), being separately antisymmetric in the in-
dices {µ, ν, λ } and {α, β, γ }, symmetric under the inter-
change {µ, ν, λ } ←→ {α, β, γ }, and obeying the (alge-
braic) Bianchi I identity

F[µνλ|α]βγ ≡ 0. (14)

The action of d̄ on Fµνλ|αβγ maps to zero,(
d̄3t
)
ρµνλαβγ

=
(
d̄F
)
ρµνλαβγ

∼ ∂[ρFµνλ]|αβγ ≡ 0, (15)

and represents nothing but the (differential) Bianchi II
identity for the curvature tensor. Since the curvature and
its traces are the most general non-vanishing second-order
derivative quantities inΩ2 (M) constructed from tµν|αβ , we
expect that the free field equations (6) completely rely on
it. Equation (15) shows that the corresponding field equa-
tions cannot be all independent, but satisfy some Noether
identities related to the Bianchi II identity of the curvature
tensor. This already points out that the free Lagrangian ac-
tion searched for must be invariant under a certain gauge
symmetry. The second sequence, namely (12), gives the
form of the gauge invariance. As the free field equations
involve Fµνλ|αβγ , it is natural to require that these are the
most general gauge invariant quantities,

δε
(
d̄2t
)
µνλαβγ

∼ δεFµνλ|αβγ = 0. (16)

This matter is immediately solved if we take(
d̄ε
)
µναβ

∼∂µεαβ|ν−∂νεαβ|µ +∂αεµν|β−∂βεµν|α=δεtµν|αβ ,

(17)
where the gauge parameters εµν|α pertain to Ω3

2 , because,
on account of the third-order nilpotency of d̄, we find that

δεFµνλ|αβγ ∼
(
d̄3ε
)
µνλαβγ

≡ 0. (18)

Clearly, the relation (17) coincides with the gauge trans-
formations (3).

We complete our discussion by exemplifying the con-
struction of the free field equations. Let us denote by
S′

0[tµν|αβ ] a free, second-order derivative action that is
gauge invariant under (17), and by δS′

0/δt
µν|αβ its func-

tional derivatives with respect to the fields, which are im-
posed to depend linearly on the undifferentiated curvature
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tensor. Then, as these functional derivatives must have the
same mixed symmetry as tµν|αβ , it follows that they nec-
essarily determine a tensor from Ω4

2 . The operations that
can be performed with respect to the curvature tensor in
order to reduce its number of indices without increasing
its derivative order is to take its simple, double, and re-
spectively, triple traces,

Fµν|αβ = σλγFµνλ|αβγ ∈ Ω4
2 , (19)

Fµα = σνβFµν|αβ ∈ Ω2
2 , (20)

F = σµαFµα ∈ Ω0
2 , (21)

where Fµα is symmetric and F is a scalar. The only com-
binations formed with these quantities that belong to Ω4

2
are generated by

Fµν|αβ , (22)

σµαFβν − σµβFαν − σναFβµ + σνβFαµ, (23)

and

(σµασνβ − σµβσνα)F, (24)

so in principle δS′
0/δt

µν|αβ can be written as a linear com-
bination of (22)–(24) with coefficients that are real con-
stants. However, the requirement that the above linear
combination indeed stands for the functional derivatives
of a sole functional restricts the parametrization of the func-
tional derivatives, and therefore of the Lagrangian action,
by means of one constant only,

δS′
0/δt

µν|αβ = λ

(
Fµν|αβ

− 1
2

(σµαFβν − σµβFαν − σναFβµ + σνβFαµ)

+
1
6

(σµασνβ − σµβσνα)F
)
. (25)

If in (25) we take the particular value

λ = − 1
4
, (26)

we recover the Lagrangian action (1) together with the field
equations (6). This also allows us to identify the expres-
sion of Tµν|αβ from (6) and (7) in terms of the curvature
tensor like

Tµν|αβ

=
(
Fµν|αβ − 1

2
(σµαFβν − σµβFαν − σναFβµ + σνβFαµ)

+
1
6

(σµασνβ − σµβσνα)F
)
. (27)

At this point, we can easily see the relationship of the
field equations (6) and their Noether identities (10) with
the curvature tensor (13) and accompanying Bianchi II

identity (15). First, we observe that the field equations (6)
are completely equivalent with the vanishing of the simple
trace of the curvature tensor

Tµν|αβ ≈ 0⇐⇒ Fµν|αβ ≈ 0. (28)

The direct statement holds due to the fact that Tµν|αβ is
expressed only through Fµν|αβ and its traces, such that
its vanishing implies Fµν|αβ ≈ 0. The converse implication
holds because the vanishing of the second and respectively
third component in the right-hand side of (27) is a simple
consequence of Fµν|αβ ≈ 0. Second, the Noether identi-
ties (10) are a direct consequence of the Bianchi II identity
for the curvature tensor,

∂[µFαβλ]|νρθ ≡ 0⇒ ∂µTµν|αβ ≡ 0. (29)

Indeed, on the one hand the relation (27) yields

∂µTµν|αβ (30)

= ∂µFµν|αβ − 1
2
∂[αFβ]ν +

1
2
σν[α

(
∂µFβ]µ − 1

3
∂β]F

)
.

On the other hand, simple computation leads to

σλθσµρ∂[µFαβλ]|νρθ = −2
(
∂µFµν|αβ − 1

2
∂[αFβ]ν

)
, (31)

2σνβ

(
∂µFµν|αβ − 1

2
∂[αFβ]ν

)
= 3

(
∂µFαµ − 1

3
∂αF

)
.

(32)

Thus, according to (31) and (32) we can state that the
Bianchi II identity for the curvature tensor implies iden-
tically vanishing of the right-hand side of (30), and hence
enforces the Noether identities (10) for the action (1).

Next, we point out the relation between the general-
ized cohomology of the 3-complex Ω2 (M) and our model.
The generalized cohomology of the 3-complex Ω2 (M) is
given by the family of graded vector spaces Hk

(
d̄
)

=
Ker

(
d̄k
)
/Im

(
d̄3−k

)
, with k = 1, 2. Each vector space

Hk

(
d̄
)

splits into the cohomology spaces Hp
(k) (Ω2 (M)),

defined as the equivalence classes of tensors from Ωp
2 (M)

that are d̄k-closed, with any two such tensors that differ by
a d̄3−k-exact element in the same equivalence class. The
spacesHp

(k) are not empty in general, even ifM has a trivial
topology. However, in the case where M (assumed to be
of dimension D) has the topology of R

D, the generalized
Poincaré lemma [23] applied to our situation states that
the generalized cohomology of the 3-differential d̄ on ten-
sors represented by rectangular diagrams with two columns
is empty in the space Ω2

(
R

D
)

of maximal two-column
tensors, H2n

(k)

(
Ω2
(
R

D
))

= 0, for 1 ≤ n ≤ D − 1 and
k = 1, 2. In particular, for n = 3 and k = 1 we find that
H6

(1)

(
Ω2
(
R

D
))

= 0 and thus, if the tensor Fµνλ|αβγ with
the mixed symmetry of the curvature tensor is d̄-closed,
then it is also d̄2-exact. To put it otherwise, if this tensor
satisfies the Bianchi II identity ∂[ρFµνλ]|αβγ ≡ 0, then there
exists an element tµν|αβ with the mixed symmetry (2, 2),
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with the help of which Fµνλ|αβγ can precisely be written
like in (13).

Finally, we observe that the formula (27) relates the
functions defining the free field equations (6) to the curva-
ture tensor by a generalized Hodge duality. The generalized
cohomology of d̄ on Ω2 (M) whenM has the trivial topol-
ogy of R

D together with this type of generalized Hodge
duality reveal many important features of the free model
under study. For example, if T̄µν|αβ is a covariant tensor
field with the mixed symmetry (2, 2) and satisfies the equa-
tions

∂µT̄µν|αβ = 0, (33)

then there exists a tensor Φ̄µνρ|αβγ ∈ Ω2
(
R

D
)

with the
mixed symmetry of the curvature tensor, in terms of which

T̄µν|αβ = ∂ρ∂γΦ̄µνρ|αβγ + c (σµασνβ − σµβσνα) , (34)

with c an arbitrary real constant. It is easy to check the
above statement in connection with the functions (7) that
define the field equations for themodel under consideration.
Indeed, direct computation provides us with c = 0 and

Tµν|αβ =
1
2
∂ρ∂γΦµνρ|αβγ , (35)

where

Φµνρ|αβγ

= σγ[ρtµν]|αβ + σα[ρtµν]|βγ + σβ[ρtµν]|γα + σρ[γtαβ]|µν

+σµ[γtαβ]|νρ + σν[γtαβ]|ρµ

−2
(
σγ[ρσµ]αtβν + σγ[µσν]αtβρ + σγ[νσρ]αtβµ

+σα[ρσµ]βtγν + σα[µσν]βtγρ + σα[νσρ]βtγµ

+σβ[ρσµ]γtαν + σβ[µσν]γtαρ + σβ[νσρ]γtαµ

)
(36)

+
(
σγ[ρσµ]ασβν + σγ[µσν]ασβρ + σγ[νσρ]ασβµ

)
t,

so that the corresponding Φµνρ|αβγ indeed displays the
mixed symmetry of the curvature tensor.

3 Free BRST symmetry

In agreement with the general setting of the antibracket–
antifield formalism, the construction of the BRST symme-
try for the free theory under consideration starts with the
identification of the BRST algebra on which the BRST
differential s acts. The generators of the BRST algebra are
of two kinds: fields/ghosts and antifields. The ghost spec-
trum for the model under study comprises the fermionic
ghosts ηαβ|µ associated with the gauge parameters εαβ|µ
from (3), as well as the bosonic ghosts for ghostsCµν due to
the first-stage reducibility parameters θµν in (5). In order
to make compatible the behavior of εαβ|µ and θµν with
that of the corresponding ghosts, we ask that ηαβ|µ satisfy
the same properties like the gauge parameters,

ηµν|α = −ηνµ|α, η[µν|α] ≡ 0 (37)

and that Cµν is antisymmetric. The antifield spectrum is
organized into the antifields t∗µν|αβ of the original tensor
field and those of the ghosts, η∗µν|α and C∗µν , of statistics
opposite to that of the associated fields/ghosts. It is un-
derstood that t∗µν|αβ is subject to some conditions similar
to those satisfied by the tensor field

t∗µν|αβ = −t∗νµ|αβ = −t∗µν|βα = t∗αβ|µν , t∗[µν|α]β ≡ 0,
(38)

and, along the same lines, it is required that

η∗µν|α = −η∗νµ|α, η∗[µν|α] ≡ 0, C∗µν = −C∗νµ. (39)

We will denote the simple and double traces of t∗µν|αβ by

t∗νβ = σµαt
∗µν|αβ , t∗νβ = t∗βν , t∗ = σνβt

∗νβ . (40)

As both the gauge generators and reducibility functions
for this model are field-independent, it follows that the
associated BRST differential (s2 = 0) splits into

s = δ + γ, (41)

where δ represents the Koszul–Tate differential (δ2 = 0),
graded by the antighost number agh (agh (δ) = −1), while
γ stands for the exterior derivative along the gauge orbits
and turns out to be a true differential (γ2 = 0) that an-
ticommutes with δ (δγ + γδ = 0), whose degree is named
pure ghost number pgh (pgh (γ) = 1). These two degrees do
not interfere (agh (γ) = 0, pgh (δ) = 0). The overall degree
that grades the BRST differential is known as the ghost
number (gh) and is defined as the difference between the
pure ghost number and the antighost number, such that
gh (s) = gh (δ) = gh (γ) = 1. According to the standard
rules of the BRST method, the corresponding degrees of
the generators from the BRST complex are valued as

pgh
(
tµν|αβ

)
= 0, pgh

(
ηµν|α

)
= 1, pgh (Cµν) = 2,

(42)

pgh
(
t∗µν|αβ

)
= pgh

(
η∗µν|α

)
= pgh (C∗µν) = 0, (43)

agh
(
tµν|αβ

)
= agh

(
ηµν|α

)
= agh (Cµν) = 0, (44)

agh
(
t∗µν|αβ

)
= 1, agh

(
η∗µν|α

)
= 2, agh (C∗µν) = 3,

(45)

and the actions of δ and γ on them are given by

γtµν|αβ = ∂µηαβ|ν − ∂νηαβ|µ + ∂αηµν|β − ∂βηµν|α,

(46)

γηµν|α = 2∂αCµν − ∂[µCν]α, γCµν = 0, (47)

γt∗µν|αβ = 0, γη∗µν|α = 0, γC∗µν = 0, (48)

δtµν|αβ = 0, δηµν|α = 0, δCµν = 0, (49)

δt∗µν|αβ =
1
4
Tµν|αβ , δη∗αβ|ν = −4∂µt

∗µν|αβ ,
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δC∗µν = 3∂αη
∗µν|α, (50)

with Tµν|αβ expressed in (7) and both δ and γ taken to act
like right derivations.

The antifield-BRST differential is known to admit a
canonical action in a structure named antibracket and de-
fined by decreeing the fields/ghosts conjugated with the
corresponding antifields, s· = (·, S), where (, ) signifies the
antibracket and S denotes the canonical generator of the
BRST symmetry. It is a bosonic functional of ghost number
zero involving both the field/ghost and antifield spectra,
which obeys the classical master equation

(S, S) = 0. (51)

The classical master equation is equivalent with the second-
order nilpotency of s, s2 = 0, while its solution encodes
the entire gauge structure of the associated theory. Taking
into account (46)–(50), as well as the actions of δ and γ in
canonical form, we find that the complete solution to the
master equation for the model under study reads

S = S0[tµν|αβ ]

+
∫
dDx

×
(
t∗µν|αβ

(
∂µηαβ|ν − ∂νηαβ|µ + ∂αηµν|β − ∂βηµν|α

)
+ η∗µν|α (2∂αCµν − ∂[µCν]α

))
. (52)

The main ingredients of the antifield-BRST symmetry de-
rived in this section will be useful in the sequel at the
analysis of consistent interactions that can be added to
the action (1) without changing its number of independent
gauge symmetries.

4 Brief review of the
antifield-BRST deformation procedure

There are three main types of consistent interactions that
can be added to a given gauge theory:
(i) the first type deforms only the Lagrangian action, but
not its gauge transformations,
(ii) the second kind modifies both the action and its trans-
formations, but not the gauge algebra, and
(iii) the third, and certainly most interesting category,
changes everything, namely, the action, its gauge symme-
tries and the accompanying algebra.

The reformulation of the problem of consistent defor-
mations of a given action and of its gauge symmetries in
the antifield-BRST setting is based on the observation that
if a deformation of the classical theory can be consistently
constructed, then the solution to the master equation for
the initial theory can be deformed into

S̄ = S+gS1+g2S2+O
(
g3) , ε (S̄) = 0, gh

(
S̄
)

= 0, (53)

such that (
S̄, S̄

)
= 0. (54)

Here and in the sequel ε (F ) denotes the Grassmann parity
of F . The projection of (54) on the various powers in the
coupling constant induces the following tower of equations:

g0 : (S, S) = 0, (55)

g1 : (S1, S) = 0, (56)

g2 :
1
2

(S1, S1) + (S2, S) = 0, (57)

...

The first equation is satisfied by hypothesis. The second
one governs the first-order deformation of the solution to
the master equation (S1) and it shows that S1 is a BRST
co-cycle, sS1 = 0, and hence it exists and is local. The
remaining equations are responsible for the higher-order
deformations of the solution to the master equation. No
obstructions arise in finding solutions to them as long as
no further restrictions, such as spacetime locality, are im-
posed. Obviously, only non-trivial first-order deformations
should be considered, since trivial ones (S1 = sB) lead
to trivial deformations of the initial theory and can be
eliminated by convenient redefinitions of the fields. Ignor-
ing the trivial deformations, it follows that S1 is a non-
trivial BRST-observable, S1 ∈ H0 (s). Once the deforma-
tion equations (56)–(57), etc., have been solved by means
of specific cohomological techniques, from the consistent
non-trivial deformed solution to the master equation we
can extract all the information on the gauge structure of
the accompanying interacting theory.

5 Self-interactions

The first task of our paper is to study the consistent inter-
actions that can be added to the free action (1) by means
of solving the main deformation equations, namely, (56)–
(57), etc. For obvious reasons, we consider only smooth,
local, Lorentz-covariant and Poincaré-invariant deforma-
tions. If we choose the notation S1 =

∫
dDx a, with a a

local function, then the local form of (56), which we have
seen to control the first-order deformation of the solution
to the master equation, becomes

sa = ∂µm
µ, gh (a) = 0, ε (a) = 0, (58)

for somemµ, and it shows that the non-integrated density of
thefirst-order deformationpertains to the local cohomology
of s at ghost number zero, a ∈ H0 (s|d), where d denotes the
exterior spacetimedifferential. In order to analyze the above
equation, we develop a according to the antighost number

a =
I∑

k=0

ak, agh (ak) = k, gh (ak) = 0, ε (ak) = 0, (59)

and assume, without loss of generality, that a stops at some
finite value I of the antighost number.1 By taking into ac-

1 This can be shown, for instance, like in [26] (Sect. 3), under
the sole assumption that the interacting Lagrangian at the first
order in the coupling constant, a0, has a finite, but otherwise
arbitrary derivative order.
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count the decomposition (41) of the BRST differential, (58)
is equivalent to a tower of local equations, corresponding
to the various decreasing values of the antighost number

γaI = ∂µ

(I)
m

µ

, (60)

δaI + γaI−1 = ∂µ

(I−1)
m

µ

, (61)

δak + γak−1 = ∂µ

(k−1)
m

µ

, I − 1 ≥ k ≥ 1, (62)

where
(

(k)
m

µ)
k=0,I

are some local currents, with

agh
(

(k)
m

µ)
= k. It can be proved2 that one can replace (60)

at strictly positive antighost numbers with

γaI = 0, I > 0. (63)

In conclusion, under the assumption that I > 0, the rep-
resentative of highest antighost number from the non-
integrated density of the first-order deformation can al-
ways be taken to be γ-closed, such that (58) associated
with the local form of the first-order deformation is com-
pletely equivalent to the tower of equations (63), and (61)
and (62).

Before proceeding to the analysis of the solutions to
the first-order deformation equations, we briefly comment
on the uniqueness and triviality of such solutions. Due to
the second-order nilpotency of γ (γ2 = 0), the solution to
the top equation (63) is clearly unique up to γ-exact con-
tributions,

aI → aI + γbI , agh (bI) = I, pgh (bI) = I − 1, ε (bI) = 1.
(64)

Meanwhile, if it turns out that aI reduces to γ-exact terms
only, aI = γbI , then it can be made to vanish, aI = 0.
In other words, the non-triviality of the first-order defor-
mation a is translated at its highest antighost number
component into the requirement that

aI ∈ HI (γ) , (65)

where HI (γ) denotes the cohomology of the exterior lon-
gitudinal derivative γ at pure ghost number equal to I. At
the same time, the general condition on the non-integrated
density of the first-order deformation to be in a non-trivial
cohomological class of H0 (s|d) shows on the one hand
that the solution to (58) is unique up to s-exact pieces plus
total divergences:

a→ a+ sb+ ∂µn
µ, (66)

gh (b) = −1, ε (b) = 1, gh (nµ) = 0, ε (nµ) = 0,

and on the other hand that if the general solution to (58)
is found to be completely trivial, a = sb + ∂µn

µ, then it
can be made to vanish, a = 0.

In the light of the above discussion, we pass to the
investigation of the solutions to (63), and (61) and (62). We

2 The proof is given in Corollary 3.1 from [27].

have seen that aI belongs to the cohomology of the exterior
longitudinal derivative (see (65)), such that we need to
compute H (γ) in order to construct the component of
highest antighost number from the first-order deformation.
This matter is solved with the help of the definitions (46)–
(48).

5.1 H (γ) and H (δ|d)

The formula (48) shows that all the antifields

χ∗∆ =
(
t∗µν|αβ , η∗µν|α, C∗µν

)
(67)

belong (non-trivially) to H0 (γ). From the definition (46)
and recalling the general discussion from Sect. 2 on the
relationship between the model under investigation and
the 3-differential complex, we infer that the most general
γ-closed (and obviously non-trivial) elements constructed
in terms of the original tensor field are the components of
the curvature tensor (13) and their spacetime derivatives,
so all these pertain to H0 (γ).

Using the first definition in (47), we notice that there
is no γ-closed linear combination of the undifferentiated
ghosts of pure ghost number one. On behalf of the same
definition, we investigate the existence of γ-closed linear
combinations in the first-order derivatives of these ghosts.
Bydirect computation, it is easy to see that themost general
γ-closed quantities in the first-order derivatives of the pure
ghost number one ghosts have the mixed symmetry of the
tensor field tµν|αβ itself

Mµν|αβ = ∂µηαβ|ν − ∂νηαβ|µ + ∂αηµν|β − ∂βηµν|α. (68)

However, with the help of (46) it is obvious that Mµν|αβ

is γ-exact, Mµν|αβ = γtµν|αβ , and thus it must be dis-
carded from H1 (γ) as being trivial. Along the same line,
one can prove that the only γ-closed combinations with
N ≥ 2 spacetime derivatives of the ghosts ηµν|α are actu-
ally polynomials with (N − 1) derivatives in the elements
Mµν|αβ , so they are γ-exact, and hence trivial in H1 (γ).
In conclusion, there is no non-trivial object constructed
out of the ghosts ηµν|α and their derivatives in H1 (γ),
which implies that H1 (γ) = 0 as there are no other ghosts
of pure ghost number equal to one in the BRST complex.
The BRST complex for the model under consideration con-
tains no other ghosts with odd pure ghost numbers, so we
conclude that

H2l+1 (γ) = 0, for all l ≥ 0. (69)

The definitions (47) show that the undifferentiated
ghosts of pure ghost number equal to two, Cµν , belong
to H (γ). The γ-closedness of Cµν further implies that all
their derivatives are also γ-closed. Let us see which of these
derivatives are trivial. Regarding their first-order deriva-
tives, from the first relation in (47) we observe that their
symmetric part is γ-exact

∂(µCν)α ≡ γ
(
− 1

3
ηα(µ|ν)

)
, (70)
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where (µν . . .) denotes plain symmetrization with respect
to the indices between brackets without normalization fac-
tors, such that ∂(µCν)α will be removed fromH (γ). Mean-
while, their antisymmetric part ∂[µCν]α is not γ-exact, and
hence can be taken as a non-trivial representative ofH (γ).
After some calculations, we find that all the second-order
derivatives of the ghosts for ghosts are γ-exact:

∂α∂βCµν =
1
12
γ
(
3
(
∂αηµν|β + ∂βηµν|α

)
+ ∂[µην] (α|β)

)
,

(71)
and so will be their higher-order derivatives. In conclusion,
the only non-trivial combinations inH (γ) constructed from
the ghosts of pure ghost number equal to two are polyno-
mials in Cµν and ∂[µCν]α. Combining this result with the
previous one on H0 (γ) being non-vanishing, we have ac-
tually proved that only the even cohomological spaces of
the exterior longitudinal derivative,H2l (γ) with l ≥ 0, are
non-vanishing.

Under these circumstances, it follows that (63) pos-
sesses non-trivial solutions only for I = 2J , where the
general form of a2J for J > 0 is (up to irrelevant, γ-exact
contributions)

aI ≡ a2J = α2J

(
[χ∗∆], [Fµνλ|αβγ ]

)
e2J(Cµν , ∂[µCν]α),

J > 0, (72)

where the notation f ([q]) means that f depends on q and its
spacetime derivatives up to a finite order. The coefficients
α2J are γ-invariant:

γα2J = 0, (73)

and exhibit the properties ε (α2J) = 0, pgh (α2J) = 0 and
agh (α2J) = 2J , while the symbol e2J stands for a generic
notation of the elements with pure ghost number equal
to 2J of a basis in the space of polynomials in Cµν and
∂[µCν]α. The objects α2J (obviously non-trivial in H0 (γ))
were taken to have a bounded number of derivatives, and
therefore they are polynomials in the antifields χ∗∆, in
the curvature tensor Fµνλ|αβγ , as well as in their deriva-
tives. Due to their γ-closedness, they are called invariant
polynomials. At zero antighost number, the invariant poly-
nomials are polynomials in the curvature tensor Fµνλ|αβγ

and its derivatives. The result that we can replace (60) with
the less obvious one (63) is a nice consequence of the fact
that the cohomology of the exterior spacetime differential
is trivial in the space of invariant polynomials at strictly
positive antighost numbers. This means that if the invari-
ant polynomial αI of strictly positive antighost number is
annihilated by d, then it can be written like the d-variation
of precisely an invariant polynomial. For details, see Sect. 3
in [27].

Replacing the solution (72) in (61) for I = 2J and
taking into account the definitions (47), we remark that a
necessary (but not sufficient) condition for the existence
of (non-trivial) solutions a2J−1 is that the invariant poly-
nomials α2J from (72) are (non-trivial) objects from the
local cohomology of the Koszul–Tate differential H (δ|d)
at antighost number 2J > 0 and pure ghost number equal

to zero3, α2J ∈ H2J (δ|d), i.e.

δα2J = ∂µj
µ, ε (jµ) = 1, agh (jµ) = 2J−1, pgh (jµ) = 0.

(74)
Consequently, we need to investigate some of the main
properties of the local cohomology of the Koszul–Tate dif-
ferential at pure ghost number zero and strictly positive
antighost numbers in order to completely determine the
component a2J of highest antighost number in the first-
order deformation. As we have discussed in Sect. 2, the free
model under study is a normal gauge theory of Cauchy or-
der equal to three. Using the general results from [24] (also
see [12] and [25,26]), one can state that the local cohomol-
ogy of the Koszul–Tate differential at pure ghost number
zero is trivial at antighost numbers strictly greater than
its Cauchy order

Hk (δ|d) = 0, k > 3. (75)

Moreover, if the invariant polynomial αk, with agh (αk) =
k ≥ 3, is trivial in Hk (δ|d), then it can be taken to be
trivial also in H inv

k (δ|d)(
αk = δbk+1 + ∂µ

(k)
c

µ

, agh (αk) = k ≥ 3
)
⇒

αk = δβk+1 + ∂µ

(k)
γ

µ

, (76)

where βk+1 and
(k)
γ

µ

are invariant polynomials. [An element
of H inv

k (δ|d) is defined via an equation similar to (74) for
2J → k, but with the corresponding current an invari-
ant polynomial.] The result (76) is proved in Theorem 4.1
from [27]. It is important since it together with (75) en-
sures that all the local cohomology of the Koszul–Tate
differential in the space of invariant polynomials is trivial
in antighost numbers strictly greater than three,

H inv
k (δ|d) = 0, k > 3. (77)

Using the definitions (50), we can organize the non-trivial
representatives of (Hk (δ|d))k≥2 (at pure ghost number
equal to zero) and

(
H inv

k (δ|d))
k≥2 as

agh non− trivial representatives
spanning Hk (δ|d) and H inv

k (δ|d)
k > 3 none
k = 3 C∗µν

k = 2 η∗µν|α

(78)

With the help of the above representatives we can construct
in principle other non-trivial elements from H (δ|d) and
H inv (δ|d) at strictly positive antighost numbers, which ex-
plicitly depend on the spacetime co-ordinates. For instance,
the object η∗

µν|αf
µνxα, with fµν some antisymmetric con-

stants, belongs to both H2 (δ|d) and H inv
2 (δ|d). However,

3 We recall that the local cohomology H (δ|d) is completely
trivial at both strictly positive antighost and pure ghost num-
bers (for instance, see [24], Theorem 5.4 and [28]).
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we will discard such elements during the deformation pro-
cedure, since they would break the Poincaré invariance of
the interactions. In contrast to the groups (Hk (δ|d))k≥2

and
(
H inv

k (δ|d))
k≥2, which are finite-dimensional, the co-

homology H1 (δ|d) at pure ghost number zero, that is re-
lated to global symmetries and ordinary conservation laws,
is infinite-dimensional since the theory is free. Fortunately,
it will not be needed in the sequel.

The above results on H (δ|d) and H inv (δ|d) in strictly
positive antighost number are important because they con-
trol the obstructions to removing the antifields from the
first-order deformation. Indeed, due to (77) and (69) we can
successively eliminate all the pieces of antighost number
strictly greater than two from the non-integrated density
of the first-order deformation by adding only trivial terms
(for details, see Sect. 5 from [27]), so we can take, without
loss of non-trivial objects, the condition

0 ≤ I = 2J ≤ 2 (79)

in the development (59), which leaves us with a single
eligible, strictly positive value, I = 2J = 2.

5.2 The case I = 2

Thus, for I = 2J = 2 we finally obtain that the expan-
sion (59) becomes

a = a0 + a1 + a2, (80)

where its last component is written (up to γ-exact objects)
in the form

a2 = α2

(
[t∗µν|αβ ], [η∗µν|α], [Fµνλ|αβγ ]

)
e2
(
Cµν , ∂[µCν]α

)
,

(81)
with the elements of pure ghost number two spanned by(

Cµν , ∂[µCν]α
)
. (82)

Taking into account the result from (78) at k = 2, we get

a2 = η∗
µν|α

(
fµναβγCβγ + f̄µναβγλ∂[βCγ]λ

)
, (83)

where fµναβγ and f̄µναβγλ must be non-derivative con-
stants. In the meantime, fµναβγ and f̄µναβγλ cannot be
antisymmetric in all indices {µ, ν, α } (because in this event
the identity η∗[µν|α] ≡ 0 maps the corresponding terms to
zero), which eventually leaves one candidate for a2:

a2 = cη∗µν|α∂[µCν]α, (84)

with c an arbitrary real constant. However, this term is
easily shown to be trivial (γ-exact) on account of the first
definition in (47) and of the identity η∗[µν|α] ≡ 0, which
allows us to add to a2 any quantity proportional with
η∗µν|α∂[µCνα] since it vanishes identically,

cη∗µν|α∂[µCν]α

= cη∗µν|α
(
∂[µCν]α − 2

3
∂[αCµν]

)
= γ

(
− c

3
η∗µν|αηµν|α

)
,

(85)

and so it can be discarded from (84) by setting

c = 0. (86)

So far we have shown that there is no non-trivial a2 in the
right-hand side of (80),

a2 = 0. (87)

It is worth noticing that at this stage we have not used any
a priori restriction on the number of derivatives from a2,
except that it is finite, but only the general requirements
of smooth, local, Lorentz-covariant and Poincaré-invariant
deformations.The assumption that the interactions contain
at most two derivatives will only be needed below.

5.3 The case I = 0

Consequently, we pass to the next value of the maximum
antighost number in the expansion (59),which, according to
the restriction (79), excludes the value I = 1. Thus, we are
only left with the possibility that the non-integrated den-
sity of the first-order deformation reduces to its antighost
number zero component, which is nothing but the deformed
Lagrangian at the first order in the coupling constant

a = a0
(
[tµν|αβ ]

)
, (88)

which must obey the equation

γa0 = ∂µm
µ. (89)

There are two main types of solutions to the last equation.
The first one corresponds to mµ = 0 and is given by func-
tions in the field tµν|αβ and its derivatives that are invariant
under the gauge transformations (3). As the components of
the curvature tensor are the most general gauge invariant
objects, it follows that

γa′
0 = 0⇒ a′

0 = a′
0
(
[Fµνλ|αβγ ]

)
. (90)

At this point we demand that the deformed gauge theory
preserves the Cauchy order of the uncoupled model, which
enforces the requirement that the interacting Lagrangian
is of maximum order equal to two in the spacetime deriva-
tives of the tensor field tµν|αβ at each order in the coupling
constant. In turn, this requirement leads to a′

0 = 0 (we have
excluded the solutions linear in [Fµνλ|αβγ ], as they obvi-
ously reduce to total divergences, and thus give a vanishing
S1).

The second type of solutions is associated withmµ = 0,
it being understood that we maintain the restriction on the
derivative order of a0 and discard the divergence-like solu-
tions a0 = ∂µu

µ. Denoting the Euler–Lagrange derivatives
of a0 by Aµν|αβ ≡ δa0/δtµν|αβ and using (46), (89) im-
plies that

∂µA
µν|αβ = 0, (91)
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where the tensor Aµν|αβ is imposed to contain at most two
derivatives, to have the mixed symmetry of tµν|αβ and to
fulfill the Bianchi I identity A[µν|α]β ≡ 0.

According to the discussion from the end of Sect. 2
(see (33)–(34)), the general solution to (91) is

δa0

δtµν|αβ
≡ Aµν|αβ = ∂ρ∂γΦ̃

µνρ|αβγ +c
(
σµασνβ−σµβσνα

)
,

(92)
where Φ̃µνρ|αβγ has the mixed symmetry of the curvature
tensor. The second term in (92) is non-trivial and generates
a cosmological-like term

a
(1)
0 = 2ct, (93)

where t is the double trace of the tensor field tµν|αβ . It
verifies the equation

γa
(1)
0 = ∂µm

(1)µ, m(1)µ = 8cηµα|
α, (94)

so we can write
a0 = a

(1)
0 + a

(2)
0 , (95)

with
γa

(2)
0 = ∂µm

(2)µ (96)

and
δa

(2)
0

δtµν|αβ
= ∂ρ∂γΦ̃

µνρ|αβγ . (97)

In the sequel we investigate the form of a(2)
0 . Imposing

that Aµν|αβ contains at most two derivatives, we find that
Φ̃µνρ|αβγ involves only the undifferentiated tensor field
tµν|αβ . Let N be a derivation in the algebra of the fields
tµν|αβ and of their derivatives that counts the powers of
the fields and their derivatives, defined by

N =
∑
n≥0

(
∂µ1 . . . ∂µn

tµν|αβ

) ∂

∂
(
∂µ1 . . . ∂µntµν|αβ

) . (98)

Then, it is easy to see that for every non-integrated density
u, we have

Nu = tµν|αβ
δu

δtµν|αβ
+ ∂µs

µ, (99)

where δu/δtµν|αβ denotes the variational derivative of u.
If u is a homogeneous polynomial of order p > 0 in the
fields and their derivatives, then Nu = pu, such that

u =
1
p
tµν|αβ

δu

δtµν|αβ
+ ∂µ

(
1
p
sµ

)
. (100)

As a(2)
0 can always be decomposed as a sum of homoge-

neous polynomials of various orders in the fields and their
derivatives, it is enough to analyze (96) for a fixed value
of p. Setting u = a

(2)
0 in (100) and using (97), we find that

a
(2)
0 =

1
p
tµν|αβ∂ρ∂γΦ̃

µνρ|αβγ + ∂µs̃
µ. (101)

Moving the derivatives from Φ̃ in (101) and taking into
account the mixed symmetry of Φ̃µνρ|αβγ , we infer that

a
(2)
0 = kFµνρ|αβγΦ̃

µνρ|αβγ + ∂µl
µ, (102)

with k = 1/9p. Acting now with γ on (102), we obtain

γa
(2)
0 = −4kηξη|ε∂δ

(
Fµνρ|αβγ

∂Φ̃µνρ|αβγ

∂tδε|ξη

)
+∂µ l̄

µ, (103)

for some l̄µ. From (103) we observe that a(2)
0 satisfies (96)

if and only if

∂δ

(
Fµνρ|αβγ

∂Φ̃µνρ|αβγ

∂tδε|ξη

)
= 0. (104)

Since the quantity between parentheses in (104) has the
same mixed symmetry as the tensor field tδε|ξη, with the
help of the relations (33)–(34) we determine that

Fµνρ|αβγ
∂Φ̃µνρ|αβγ

∂tδε|ξη
= ∂ϕ∂θψ

δεϕ|ξηθ, (105)

for someψδεϕ|ξηθ with the mixed symmetry of the curvature
tensor, which depends only on the undifferentiated tensor
field tµν|αβ . Computing the left-hand side of (105), we
arrive at

Fµνρ|αβγ
∂Φ̃µνρ|αβγ

∂tδε|ξη
= ∂ϕ∂θ

(
9tµν|αβ

∂Φ̃µνϕ|αβθ

∂tδε|ξη

)

−9
∂2Φ̃µνρ|αβγ

∂tδε|ξη∂tδ′ε′|ξ′η′

× (2 (∂ρtµν|αβ

) (
∂γtδ′ε′|ξ′η′

)
+ tµν|αβ∂ρ∂γtδ′ε′|ξ′η′

)
−9

∂3Φ̃µνρ|αβγ

∂tδε|ξη∂tδ′ε′|ξ′η′∂tδ′′ε′′|ξ′′η′′

×tµν|αβ

(
∂ρtδ′ε′|ξ′η′

) (
∂γtδ′′ε′′|ξ′′η′′

)
. (106)

The right-hand side of (106) can be written in the form of
the right-hand side from (105) if and only if

9tµν|αβ
∂Φ̃µνϕ|αβθ

∂tδε|ξη
= ψδεϕ|ξηθ, (107)

∂2Φ̃µνρ|αβγ

∂tδε|ξη∂tδ′ε′|ξ′η′
= 0, (108)

∂3Φ̃µνρ|αβγ

∂tδε|ξη∂tδ′ε′|ξ′η′∂tδ′′ε′′|ξ′′η′′
= 0.

On the one hand, the requirements (108) restrict Φ̃µνρ|αβγ

to be linear in tµν|αβ and, on the other hand, we have the
condition that Φ̃µνρ|αβγ has the same mixed symmetry as
the curvature tensor. These considerations fix Φ̃µνρ|αβγ to
be precisely of the type

Φ̃µνρ|αβγ = k′Φµνρ|αβγ , (109)
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where k′ is a real constant and Φµνρ|αβγ is the tensor (36)
involved in the functions (35) that yield the free field equa-
tions. Meanwhile, (109) fixes the value of p from (101) to
p = 2. By direct computation we deduce that (107) is also
satisfied and get that

ψδεϕ|ξηθ = 9k′Φδεϕ|ξηθ. (110)

Inserting (109) in (101) for p = 2, due to (35) we infer that

a
(2)
0 = k′tµν|αβT

µν|αβ + ∂µl
µ, (111)

and hence (111) is (up to an irrelevant divergence) propor-
tional to the original Lagrangian. This solution is however
trivial in H0 (s|d) since it can be expressed as

a
(2)
0 = sb+ ∂µv

µ, gh (b) = −1, gh (vµ) = 0, (112)

where

b = 4k′
(
t∗µν|αβtµν|αβ + η∗µν|αηµν|α + C∗µνCµν

)
,

(113)

vµ =
(
lµ − 16k′t∗µν|αβηαβ|ν − 12k′η∗αβ|µCαβ

)
. (114)

Then, in agreement with the discussion from the beginning
of this section, the solution (112) can be safely removed
from the first-order deformation by replacing it with

a
(2)
0 = 0. (115)

From (93) for c = 1/2, using (95), and relying on the results
contained in the previous subsections, we conclude that

S1 =
∫
dDx t (116)

represents the only non-trivial first-order deformation of
the solution to the master equation for the tensor tµν|αβ .
Moreover, it is consistent to all orders in the coupling
constant. Indeed, as (S1, S1) = 0, the equation (57) that
describes the second-order deformation is satisfied with
the choice

S2 = 0, (117)

while the remaining higher-order equations are fulfilled for

S3 = S4 = . . . = 0, (118)

and hence there are no non-trivial self-interactions for the
tensor field tµν|αβ .

The main conclusion of this section is that, under the
general conditions of smoothness, locality, Lorentz covari-
ance andPoincaré invariance of thedeformations, combined
with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-
trivial self-interactions for the massless tensor field with
the mixed symmetry of the Riemann tensor. The only
piece that can be added to the original Lagrangian is a
cosmological-like term, which does not modify the original
gauge transformations.

6 Interactions with the Pauli–Fierz theory

We have argued in the previous section that there are no
consistent self-interactions that can be added to the free
action of the massless tensor field tµν|αβ . In the sequel we in-
vestigate if there exist local, smooth, Lorentz-covariant and
Poincaré-invariant, consistent interactions between such a
tensor field and a non-interacting massless spin-2 field hµν ,
described by the Pauli–Fierz action [21]. We maintain the
restriction on the maximum derivative order of the inter-
actions being equal to two. The self-interactions of a single
massless spin-2 field have been extensively studied in the
literature and are known to lead to the Einstein–Hilbert
action with a cosmological term. We will mainly focus on
the cross-couplings, i.e. on the interactions that mix the
fields tµν|αβ and hµν , and will not insist on the cohomo-
logical construction of the Einstein–Hilbert action with a
cosmological term, which can be found in detail in [25].

6.1 Free model and accompanying BRST symmetry

We start from a free action, written as the sum between (1)
and the Pauli–Fierz action inD ≥ 5 spacetime dimensions:

S0[tµν|αβ , hµν ] = S0[tµν|αβ ] + SPF
0 [hµν ], (119)

with

SPF
0 [hµν ]

=
∫
dDx

(
− 1

2
(∂ρhµν) (∂ρhµν) + (∂ρh

ρµ)
(
∂λhλµ

)

− (∂ρh)
(
∂λhλρ

)
+

1
2

(∂ρh) (∂ρh)
)
, (120)

where hµν is symmetric and h denotes its trace. The ac-
tion (120) is invariant under the abelian and irreducible
gauge transformations

δεhµν = ∂(µεν). (121)

The presence of the gauge transformations (121) shows
that the functions that define the field equations of the
Pauli–Fierz action

δSPF
0

δhµν
≡ −2Hµν ≈ 0 (122)

are not all independent, but satisfy the Noether identities

∂µHµν = 0. (123)

In the above,Hµν represents the linearized Einstein tensor

Hµν = Kµν − 1
2
σµνK, Hµν = Hνµ, (124)

with Kµν the linearized Ricci tensor and K the linearized
scalar curvature, which are defined with the help of the
linearized Riemann tensor

Kµν|αβ = − 1
2

(∂µ∂αhνβ−∂ν∂αhµβ−∂µ∂βhνα+∂ν∂βhµα)

(125)
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via its simple and, respectively, double traceKµν = Kα
µ|αν ,

K = Kµ
µ. The linearized Riemann tensor Kµν|αβ exhibits

the same symmetries and satisfies the same identity (2) as
the tensor field tµν|αβ , but in addition fulfills the Bianchi
II identity

∂[λKµν] |αβ ≡ 0. (126)

The most general gauge invariant objects that can be con-
structed fromhµν are the linearizedRiemann tensorKµν|αβ

and its spacetime derivatives. The Pauli–Fierz action alone
describes a free gauge theory of Cauchy order equal to two,
so the Cauchy order of the theory (119) is equal to three.

The main features of the Pauli–Fierz theory can be
understood in an elegant fashion via the generalized differ-
ential complexΩ2 (M) introduced in Sect. 2. An interesting
result refers to the generalized cohomology of d̄ onΩ2 (M),
where M has the trivial topology of R

D, combined with
the operation of generalized Hodge duality. Let us con-
sider a symmetric, covariant tensor field H̄µν , subject to
the equation

∂µH̄
µν = 0. (127)

Then there exists a tensor Φ̄µα|νβ with mixed symmetry
of the linearized Riemann tensor, such that

H̄µν = ∂α∂βΦ̄
µα|νβ + cσµν , (128)

with c an arbitrary real constant. The above statement
can easily be verified with respect to the linearized Einstein
tensor (124), which satisfies the Noether identity (123) and
can indeed be written in the form (128) for c = 0

Hµν = ∂α∂βΦ
µα|νβ , (129)

where the corresponding Φµα|νβ reads

Φµα|νβ =
1
2
(−hµνσαβ + hανσµβ + hµβσαν (130)

−hαβσµν +
(
σµνσαβ − σανσµβ

)
h
)
.

The overall BRST complex comprises the BRST gen-
erators introduced in Sect. 3 and associated with the the-
ory (1), as well as the Pauli–Fierz field hµν , the fermionic
ghost ηµ corresponding to the gauge invariances of (120),
together with the antifields h∗µν and η∗µ from the Pauli–
Fierz sector. The BRST differential of the entire free gauge
theory splits like in (41), where the actions of γ and δ on
the former BRST generators are expressed by (46)–(50),
while on the latter ones are defined by

γhµν = ∂(µην), γηµ = 0, (131)

γh∗µν = 0 = γη∗µ, (132)

δhµν = 0 = δηµ, (133)

δh∗µν = 2Hµν , δη
∗µ = −2∂νh

∗νµ. (134)

The pure ghost number and antighost number of the BRST
generators can partially be found in (42)–(45), while for the
Pauli–Fierz field/ghost/antifield sector they are given be-
low:

pgh (hµν) = 0, pgh (ηµ) = 1,

pgh (h∗µν) = 0 = pgh (η∗µ) , (135)

agh (hµν) = 0 = agh (ηµ) , agh (h∗µν) = 1,

agh (η∗µ) = 2. (136)

In agreement with the general line of the antifield-BRST
method, the free BRST differential s for the theory (119)
is canonically generated in the antibracket (s· = (·, S)) by
the solution to the master equation (S, S) = 0, which in
our case has the form

S = St + Sh, (137)

where St is given by the right-hand side of (52) and

Sh = SPF
0 [hµν ] +

∫
dDxh∗µν∂(µην). (138)

6.2 First-order deformations: H (γ) and H (δ|d)

In order to determine the solution to the local first-order de-
formation equation (58), we proceed like in Sect. 5, namely,
we expand the non-integrated density according to the
antighost number as in (59) and solve the equivalent tower
of equations, given by (63), and (61) and (62). It is conve-
nient to split the first-order deformation into

a = ah−h + at−t + ah−t, (139)

where ah−h denotes the part responsible for the self-inter-
actions of the Pauli–Fierz field, at−t is related to the de-
formations of the tensor field tµν|αβ , and ah−t signifies the
component that describes only the cross-interactions be-
tween hµν and tµν|αβ . Then, ah−h is completely known (for
a detailed analysis, see for instance [25])

ah−h = ah−h
0 + ah−h

1 + ah−h
2 , (140)

where

ah−h
2 = η∗µηα∂µηα, (141)

ah−h
1 = −h∗µνηα (∂µhνα + ∂νhµα − ∂αhµν) , (142)

and ah−h
0 is the cubic vertex of the Einstein–Hilbert La-

grangian plus a cosmological term. The piece at−t has been
computed in the previous section and is given by the right-
hand side of (116). Inserting (139) in (58) and using the fact
that the first two components already obey the equations

sah−h = ∂µu
µ, sat−t = ∂µv

µ, (143)

it follows that only ah−t is unknown, being subject to
the equation

sah−t = ∂µw
µ. (144)

If we develop ah−t according to the antighost number

ah−t =
I∑

k=0

ah−t
k , agh

(
ah−t

k

)
= k,

gh
(
ah−t

k

)
= 0, ε

(
ah−t

k

)
= 0

(145)
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(the expansion (145) can be assumed, like in the previous
section, to end at a finite value of the antighost number,
once we require that ah−t

0 is local), then (144) is equivalent
to the tower of equations4

γah−t
I = 0, (146)

δah−t
I + γah−t

I−1 = ∂µ

(I−1)
w

µ

, (147)

δah−t
k + γah−t

k−1 = ∂µ

(k−1)
w

µ

, I − 1 ≥ k ≥ 1, (148)

where (
(k)
w

µ

)k=0,I are some local currents, with agh(
(k)
w

µ

) =
k.

Equation (146) shows that ah−t
I ∈ H (γ), such that

on the one hand its solution is unique up to trivial (γ-
exact) contributions, ah−t

I → ah−t
I + γbh−t

I , and on the
other hand every purely γ-exact solution ah−t

I = γbh−t
I

can be taken to vanish, ah−t
I = 0. In order to infer the

general solution to this equation, we initially examine the
structure of H (γ). To this end, from (48) and (132) we
observe that all the antifields

ω∗Θ =
(
t∗µν|αβ , h∗µν , η∗µν|α, η∗µ, C∗µν

)
, (149)

and their spacetime derivatives belong to H0 (γ). Mean-
while, the definition (46) and the first relation in the for-
mula (131) yield the most general γ-closed (and obviously
non-trivial) objects constructed from the original tensor
fields as the curvature tensor (13), the linearized Riemann
tensor (125), and their derivatives. Consequently,H0 (γ) is
spanned by arbitrary polynomials inω∗Θ,Fµνλ|αβγ ,Kµν|αβ

and their derivatives. From (131),we observe that the undif-
ferentiated Pauli–Fierz ghosts ηµ and their antisymmetric
first-order derivatives ∂[µην] belong toH (γ), while the sym-
metric part of their first-order derivatives is γ-exact (see
the former relation in (131)), and so are all their second-
and higher-order derivatives since

∂α∂βηµ =
1
2
γ
(
∂(αhβ)µ − ∂µhαβ

)
. (150)

We have shown in Sect. 5 that the other set of pure ghost
number one ghosts, related to the tensor field tµν|αβ , brings
no contribution toH (γ). In conclusion, the presence of the
Pauli–Fierz field enriches the cohomology of γ, which is no
longer trivial at odd pure ghost numbers, as it happened
in the case of the tensor field tµν|αβ alone. Regarding the
ghosts of pure ghost number equal to two, we have seen in
the previous section that the only combinations in H (γ)
constructed from them are polynomials inCµν and ∂[µCν]α.
Thus, the general solution to (146) is expressed (up to γ-
exact objects) by

ah−t
I = αh−t

I

(
[ω∗Θ], [Fµνλ|αβγ ], [Kµν|αβ ]

)
4 The fact that it is possible to replace the equation γah−t

I =

∂µ

(I)
w

µ

with (146) can be done like in the proof of Corollary
3.1 from [27].

×ωI
(
ηµ, ∂[µην], Cµν , ∂[µCν]α

)
, (151)

for I > 0,where theγ-invariant coefficientsαh−t
I are subject

to the conditions agh
(
αh−t

I

)
= I andpgh

(
αh−t

I

)
= 0,while

the symbol ωI stands for a generic notation of the elements
with pure ghost number equal to I of a basis of polynomials
in the corresponding ghosts and their antisymmetric first-
order derivatives. In addition, every term in ah−t

I must
contain at least one element from each of the two theories
in order to provide effective cross-interactions. As they
have a bounded number of derivatives, the quantities αh−t

I
are in fact polynomials in the antifields, in the curvature
tensor (13), in the linearized Riemann tensor, and in all
their derivatives. They represent the most general non-
trivial elements from H (γ) at pure ghost number zero and
will again be called “invariant polynomials” (for the larger
free gauge theory (119), subject to the gauge symmetries (3)
and (121)).

Substituting the solution (151) into the next equation,
namely (147), and taking into account the definitions (46)–
(50) and (131)–(134), we obtain the result that a necessary
condition for (147) to possess (non-trivial) solutions with
respect to ah−t

I−1 for I > 0 is that the invariant polynomi-
als αh−t

I appearing in (151) are non-trivial elements from
HI (δ|d), δαh−t

I = ∂µk
µ. Taking into account the fact that

the maximum Cauchy order of the free gauge theory (119)
is equal to three, we have [24,26]

Hk (δ|d) = 0, k > 3. (152)

Meanwhile, the result remains valid that if the invariant
polynomial αh−t

k is trivial inHk (δ|d) for k ≥ 3, then it can
be chosen to be trivial also in H inv

k (δ|d)5, which combined
with (152) allows us to state that

H inv
k (δ|d) = 0, k > 3, (153)

where H inv
k (δ|d) denotes, just like before, the local coho-

mology group of the Koszul–Tate differential at antighost
number k in the space of invariant polynomials. On account
of the definitions (50) and (134), we are able to identify
the non-trivial representatives of (Hk (δ|d))k≥2, as well as
of
(
H inv

k (δ|d))
k≥2, under the form

agh non− trivial representatives
spanning Hk (δ|d) and H inv

k (δ|d)
k > 3 none
k = 3 C∗µν

k = 2 η∗µν|α, η∗µ

(154)

We will exclude, as we did before, all non-trivial elements
from H (δ|d) and H inv (δ|d) at strictly positive antighost
numbers that involve the spacetime co-ordinates, as they
would result in interactions with broken Poincaré invari-
ance. As for the cohomological groupH1 (δ|d), its determi-
nation is a difficult task, but we will solve the deformation
equations without explicitly computing it.

5 The proof can be realized in the same manner as that of
Theorem 4.1 from [27], with the precaution to include in an
appropriate manner the dependence on the Pauli–Fierz sector.
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Like in the case of the tensor field tµν|αβ alone, the coho-
mology groups Hk (δ|d) and H inv

k (δ|d) at strictly positive
antighost numbers give us information on the obstructions
to remove the antifields from the first-order deformation.
As a consequence of the result (153), we can eliminate all
the terms with k > 3 from the expansion (145) by adding
to it only trivial pieces and thus work with I ≤ 3. This
can be done in principle like in Sect. 5 from [27], up to the
following observations:
(1) the cohomological spaces

(
H2l+1 (γ)

)
l≥0 are no longer

trivial;
(2) the operator D̄ should be extended to the Pauli–Fierz
ghost sector like in the Appendix A.1 from [25]. The last
representative of (145) is of the type (151), with the corre-
sponding invariant polynomials necessarily non-trivial in
H inv

I (δ|d) for I = 2, 3, and respectively in H1 (δ|d) for
I = 1.

6.3 The case I = 3

In view of the above considerations we can assume that the
expansion (145) stops at antighost number three (I = 3),

ah−t = ah−t
0 + ah−t

1 + ah−t
2 + ah−t

3 , (155)

where ah−t
3 is of the form (151) for I = 3. At this point we

enforce the assumption on the maximum derivative order
of the corresponding ah−t

0 to be equal to two. Using the
result that the most general representative of H inv

3 (δ|d) is
the undifferentiated antifield C∗αβ (see (154) for k = 3)
and that the elements of pure ghost number three that
fulfill the condition on the maximum derivative order are
given by(
ηµηνηρ, ηµην∂[ρηλ], Cµνηρ, Cµν∂[ρηλ], ∂[µCν]ρηλ

)
, (156)

we can write down that the general solution to (146) for
I = 3 is like

ah−t
3

= C∗αβ
(
fµνρ
1αβηµηνηρ + fµνρλ

2αβ ηµην∂[ρηλ] + gµνρ
1αβCµνηρ

+gµνρλ
2αβ Cµν∂[ρηλ] + gµνρλ

3αβ ∂[µCν]ρηλ

)
+ γb3, (157)

where all the coefficients of the type f and g are required
to be non-derivative constants. Combining this result with
the symmetries of the various coefficients due to the cor-
responding symmetries of the antifield and of the ghosts,
we remain with the following independent possibilities in
D ≥ 5 spacetime dimensions:

ah−t
3 = a

(1)h−t
3 + a

(2)h−t
3 + a

(3)h−t
3 , (158)

where in D = 5

a
(1)h−t
3 = εαβµνρC∗

αβ (c1ηµηνηρ + d1Cµνηρ) + γb
(1)
3 ;
(159)

in D = 6

a
(2)h−t
3 = εαβµνρλC∗

αβ

(
c2ηµην∂[ρηλ] (160)

+d2Cµν∂[ρηλ] + d3∂[µCν]ρηλ

)
+ γb

(2)
3 ;

in all D ≥ 56

a
(3)h−t
3 = C∗αβ

(
c3ηαη

ρ∂[βηρ] + d4C
ρ

α ∂[ρηβ] (161)

+d5∂[αCβ]ρη
ρ + d6∂[ρCα]βη

ρ
)

+ γb
(3)
3 .

In the above all cm and dn are real constants. Obviously,
since ah−t

3 is subject to (147) for I = 3 and the compo-
nents (159)–(161) are mutually independent, it follows that
each of them must separately fulfill such an equation, i.e.,

δa
(i)h−t
3 = −γa(i)h−t

2 + ∂µw
(i)µ, i = 1, 2, 3. (162)

By computing the action of δ on
(
a
(i)h−t
3

)
i=1,2,3

and using

the definitions (47) and (131), we infer that none of them
can be written like in the right-hand side of (162), no matter
what

(
b
(i)
3

)
i=1,2,3

we take in the right-hand side of (159)–

(161), such that we must set all the nine constants equal
to zero:

cm = 0, m = 1, 2, 3, dn = 0, n = 1, 2, 3, 4, 5, 6, (163)

and so ah−t
3 = 0.

6.4 The case I = 2

We pass to the next eligible value (I = 2) and write

ah−t = ah−t
0 + ah−t

1 + ah−t
2 . (164)

Repeating the reasoning developed in the above, we see
that ah−t

2 is, up to trivial γ-exact contributions, of the
form (151) for I = 2, with the elements of pure ghost num-
ber two obeying the assumption on the maximum number
of derivatives from the corresponding ah−t

0 being equal to
two expressed by(

ηµην , ηµ∂[νηρ], Cµν , ∂[µCν]ρ
)
. (165)

Using the fact that the general representative of H inv
2 (δ|d)

is spanned in this situationby the undifferentiated antifields
η∗αβ|γ and η∗α (see (154) for k = 2), to which we add the
requirement that ah−t

2 comprises only terms that effectively
mix the ghost/antifield sectors of the starting free theories,
and combining these with (151), we obtain

ah−t
2 = η∗αβ|γ

(
gµν
1αβγηµην + gµνρ

2αβγηµ∂[νηρ]

)
(166)

6 Another possible term in a
(3)h−t
3 would be d7C

∗αβ∂[ρC ρ
α] ηβ ,

but it is trivial since it can be written like γ
(
− d7

3 C∗αβη ρ
αρ| ηβ

)
,

and thus we have discarded it from ah−t
3 by putting d7 = 0.
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+η∗α
(
gµν
3αCµν + gµνρ

4α ∂[µCν]ρ
)

+ γb2,

where the coefficients denoted by g are imposed to be
non-derivative constants. Taking into account the identity
η∗[αβ|γ] ≡ 0 and the hypothesis that we work only inD ≥ 5
spacetime dimensions, we arrive at7

ah−t
2 =

c′

2
η∗αβ|µ∂[αηβ]ηµ +

c′′

2
η

∗αβ|
β∂[αηµ]η

µ + γb2.

(167)
We will analyze these terms separately. The first one leads
to non-vanishing components of antighost number one and
respectively zero as solutions to the equations

δa′h−t
2 + γa′h−t

1 = ∂µ

(1)

w′
µ

, δa′h−t
1 + γa′h−t

0 = ∂µ

(0)

w′
µ

,
(168)

where we introduce the notation

a′h−t
2 =

c′

2
η∗αβ|µ∂[αηβ]ηµ. (169)

Indeed, straightforward calculations give as output

a′h−t
1

=
c′

2
t∗µν|αβ ((∂µhνα − ∂νhµα) ηβ + (∂αhβµ − ∂βhαµ) ην

− (∂µhνβ − ∂νhµβ) ηα − (∂αhβν − ∂βhαν) ηµ) , (170)

a′h−t
0 =

c′

8
Tµν|αβ (hµαhνβ − hµβhνα) , (171)

where the tensor Tµν|αβ is given in (7). In consequence,
we obtained a possible form of the first-order deformation
for the cross-interactions between the Pauli–Fierz theory
and the tensor field tµν|αβ as follows:

a′h−t = a′h−t
0 + a′h−t

1 + a′h−t
2 , (172)

where the quantities in the right-hand side of (172) are
expressed by (169)–(171). However, a′h−t is trivial in the
context of the overall non-integrated density ah−t of the
first-order deformation in the sense that it is in a trivial
class of the local cohomology of the free BRST differential
H0 (s|d). Indeed, one can check that it can be put in a
s-exact modulo d form

a′h−t = c′s
(

1
3
C∗µνηµην − 1

2
η∗αβ|µ (hαµηβ − hβµηα)

+
1
2
t∗µν|αβ (hµαhνβ − hµβhνα)

)
+ ∂µl

µ, (173)

and so it can be eliminated from ah−t by setting

c′ = 0. (174)

7 The possibility c′′′η∗α∂[αC ν
ν] was excluded from ah−t

2 as

it is trivial, being equal to γ
(
− c′′′

3 η∗αη ν
αν|

)
, such that it can

be removed from ah−t
2 by choosing c′′′ = 0.

The second piece in (167), which is clearly non-trivial,
appears to be more interesting. Indeed, let us fix the trivial
(γ-exact) contribution from the right-hand side of (167) to

b2 =
c′′

2
η

∗αβ|
βhαγη

γ , (175)

which is equivalent to starting from

a′′h−t
2 = c′′η∗αβ|

β (∂αηµ) ηµ. (176)

Then it yields the component of antighost one as solution

to the equation δa′′h−t
2 + γa′′h−t

1 = ∂µ

(1)
w′′

µ

in the form

a′′h−t
1 = 2c′′t∗µα (∂µhαλ + ∂αhµλ − ∂λhµα) ηλ, (177)

where the notation t∗µα is explained in (40). Next, we pass
to the equation

δa′′h−t
1 + γa′′h−t

0 = ∂µ

(0)

w′′
µ

, (178)

where

δa′′h−t
1 = − c

′′

2
Tµα (∂µhαλ + ∂αhµλ − ∂λhµα) ηλ, (179)

with Tµα given in (8). In the sequel we will show that there
are no solutions to (178). Our procedure goes as follows.
Suppose that there exist solutions a′′h−t

0 to (178). Using the
formula (179), it follows that such an a′′h−t

0 must be linear
in the tensor field tµν|αβ , quadratic in the Pauli–Fierz field,
and second-order in the derivatives. Integrating by parts
in the corresponding functional constructed from a′′h−t

0
allows us to move the derivatives such as to act only on
the Pauli–Fierz fields, and therefore to work with

a′′h−t
0 = c′′tµν|αβalin

µν|αβ (h∂∂h, ∂h∂h) , (180)

where the above notation signifies that alin
µν|αβ is a linear

combination of the generic polynomials between parenthe-
ses (with the mixed symmetry of the tensor field tµν|αβ).
By direct computation we get

γa′′h−t
0 = ∂µ

(
4c′′ηαβ|νalin

µν|αβ

)
(181)

−4c′′ηαβ|ν∂µalin
µν|αβ + c′′tµν|αβγalin

µν|αβ ,

where

γalin
µν|αβ = ālin

µν|αβ (h∂∂∂η, ∂h∂∂η, ∂∂h∂η) , (182)

with η being a generic notation for the Pauli–Fierz ghost
ηµ. As δa′′h−t

1 contains no ghosts from the tµν|αβ-sector,
we require that γa′′h−t

0 has the property

∂µalin
µν|αβ (h∂∂h, ∂h∂h) = 0, (183)

such that

γa′′h−t
0 = ∂µ

(
4c′′ηαβ|νalin

µν|αβ

)
+ c′′tµν|αβγalin

µν|αβ . (184)
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Simple calculations in (179) give

δa′′h−t
1 = ∂µp

µ + c′′tµν|αβblinµν|αβ (∂h∂∂η, ∂∂h∂η, η∂∂∂h) .
(185)

Inserting (184) and (185) in (178) and observing that only
blinµν|αβ contains terms that are third-order in the derivatives
of the Pauli–Fierz fields, we conclude that the existence
of a′′h−t

0 is completely dictated by the behavior of blinµν|αβ .
More precisely, a′′h−t

0 exists if and only if the part of the
type η∂∂∂h from blinµν|αβ vanishes identically and/or can be
written like the δ-variation of something like ∂h∗tη. Direct
computation produces the part from blinµν|αβ of order three
in the derivatives of the Pauli–Fierz fields in the form

blinµν|αβ (η∂∂∂h)

∼ c′′ηλ∂λ (σβν (∂µ∂
ρhρα + ∂α∂

ρhρµ −�hαµ − ∂α∂µh)

− 1
2
σβνσαµ (∂ρ∂γhργ −�h) + ∂β∂νhαµ

+ (α←→ β, µ←→ ν)

− (β ←→ α, µ→ µ, ν → ν)

− (µ←→ ν, α→ α, β → β)) , (186)

and it neither vanishes identically nor is proportional with
δ
(
∂λh

∗
αµ

)
, as it can be observed from the expression (124)

of the functions that define the field equations for the Pauli–
Fierz field. The rest of the terms from (186) are obtained
from the first ones by making the indicated index changes.
In conclusion, we must also take

c′′ = 0 (187)

in (176), so ah−t
2 = 0.

6.5 The case I = 1

Now, we analyze the next possibility, namely I = 1 in (145):

ah−t = ah−t
0 + ah−t

1 , (188)

where ah−t
1 must be searched among the non-trivial solu-

tions to the equation γah−t
1 = 0, which are offered by

ah−t
1 =

αh−t
1

(
[t∗µν|αβ ], [h∗µν ], [Fµνλ|αβγ ], [Kµν|αβ ]

)
×ω1 (ηµ, ∂[µην]

)
, (189)

where the elements of pure ghost number one are(
ηµ, ∂[µην]

)
. (190)

On the one hand, the assumption on the maximum deriva-
tive order of the interacting Lagrangian being equal to
two prevents the coefficients αh−t

1 to depend on either the
curvature tensors or their spacetime derivatives. On the

other hand, ah−t
1 can involve only the antifields t∗µν|αβ

and their spacetime derivatives, because otherwise, as ω1

includes only the Pauli–Fierz ghosts, it would not lead to
cross-interactions between the fields tµν|αβ and hµν . Mov-
ing in addition the derivatives from these antifields such
as to act only on the elements (190) from ah−t

1 and relying
again on the assumption of the maximum derivative order,
we eventually remain with one possibility8 (up to γ-exact
quantities)

ah−t
1

∼ t∗µν|αβ
(
σµα∂[νηβ] − σµβ∂[νηα] + σνβ∂[µηα]

−σνα∂[µηβ]
)

= 4t∗νβ∂[νηβ] ≡ 0, (191)

which vanishes identically due to the symmetry property
in (40) of the simple trace of the antifield t∗µν|αβ .

6.6 The case I = 0

As ah−t
1 in (191) vanishes, we remain with one more

case, namely where ah−t reduces to its antighost number
zero piece

ah−t = ah−t
0

(
[tµν|αβ ], [hµν ]

)
, (192)

which is subject to the equation

γah−t
0 = ∂µw

µ. (193)

As we have discussed in Sect. 5, there are two types of
solutions to (193). The first one corresponds to wµ = 0
and is given by arbitrary polynomials that mix the cur-
vature tensor (13) and its spacetime derivatives with the
linearized Riemann tensor (125) and its derivatives, which
are however excluded from the condition on the maximum
derivative order of ah−t

0 (their derivative order is at least
four). The second one is associated with wµ = 0, it being
understood that we discard the divergence-like solutions
ah−t
0 = ∂µz

µ and preserve the maximum derivative or-
der restriction. Denoting the Euler–Lagrange derivatives
of ah−t

0 by Bµν|αβ ≡ δah−t
0 /δtµν|αβ and respectively by

Dµν = δah−t
0 /δhµν , and using the formula (46) together

with the first definition in (131), (193) implies that

∂µB
µν|αβ = 0, ∂µD

µν = 0. (194)

The tensors Bµν|αβ and Dµν are imposed to contain at
most two derivatives and to have the mixed symmetry
of tµν|αβ and respectively of hµν . Meanwhile, they must
yield a Lagrangian ah−t

0 that effectively couples the two
sorts of fields, soBµν|αβ andDµν effectively depend on hµν

and respectively on tµν|αβ . According to the considerations

8 The identity t∗[µν|α]β = 0 forbids the appearance of solu-
tions proportional to Levi-Civita symbols in any D ≥ 5 dimen-
sion.
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from Sect. 2 and Sect. 6.1 (see (33) and (34), and (127)
and (128)), the solutions to (194) are of the type9

δah−t
0

δtµν|αβ
≡ Bµν|αβ = ∂ρ∂γΦ̃

µνρ|αβγ ,

δah−t
0

δhµν
≡ Dµν = ∂α∂βΦ̃

µα|νβ , (195)

where Φ̃µνρ|αβγ and Φ̃µα|νβ depend only on the undifferen-
tiated fields hµν and tµν|αβ (otherwise, the corresponding
ah−t
0 would be more than second-order in the derivatives),

with Φ̃µνρ|αβγ having the mixed symmetry of the curvature
tensor Fµνρ|αβγ and Φ̃µα|νβ that of the linearized Riemann
tensor. From now on we proceed along the lines employed
in the Sect. 5.3. In view of this, we introduce a deriva-
tion on the algebra of non-integrated densities depending
on tµν|αβ , hµν and on their derivatives, that counts the
powers of the fields and their derivatives,

N̄ =
∑
n≥0

((
∂µ1 . . . ∂µntµν|αβ

) ∂

∂
(
∂µ1 . . . ∂µntµν|αβ

)
+ (∂µ1 . . . ∂µn

hµν)
∂

∂ (∂µ1 . . . ∂µn
hµν)

)
, (196)

and we observe that the action of N̄ on an arbitrary non-
integrated density ū

(
[tµν|αβ ], [hµν ]

)
is

N̄ ū = tµν|αβ
δū

δtµν|αβ
+ hµν

δū

δhµν
+ ∂µr

µ, (197)

where δū/δtµν|αβ and δū/δhµν denote the variational
derivatives of ū. In the case where ū is a homogeneous
polynomial of order p > 0 in the fields and their deriva-
tives, we have N̄ ū = pū, and so

ū =
1
p

(
tµν|αβ

δū

δtµν|αβ
+ hµν

δū

δhµν

)
+ ∂µ

(
1
p
rµ

)
. (198)

As ah−t
0 can always be decomposed as a sum of homoge-

neous polynomials of various orders, it is enough to analyze
the (193) for a fixed value of p. Putting ū = ah−t

0 in (198)
and inserting (195) in the associated relation, we can write

ah−t
0 =

1
p

(
tµν|αβ∂ρ∂γΦ̃

µνρ|αβγ + hµν∂α∂βΦ̃
µα|νβ

)
+∂µr̄

µ.

(199)
Moving the derivatives from Φ̃ in (199) and recalling the
mixed symmetries of Φ̃µνρ|αβγ and Φ̃µα|νβ , we infer that

ah−t
0 = k1Fµνρ|αβγΦ̃

µνρ|αβγ + k2Kµα|νβΦ̃
µα|νβ + ∂µ l̄

µ,
(200)

9 The solutions involving the constant tensors Bµν|αβ ∼(
σµασνβ − σµβσνα

)
and Dµν ∼ σµν give cosmological terms

and have already been considered in the above. They are not
eligible anyway in the present context, which exclusively focuses
on the cross-interactions between the two sorts of fields.

with k1 = 1/9p and k2 = −1/2p. By computing the action
of γ on (200) and following a reasoning similar to that
applied between the formulas (103) and (111), we obtain
that p = 2 and

ah−t
0 = k′Tµαhµα. (201)

As the above ah−t
0 vanishes on the stationary surface (6)

of the field equations for the tensor tµν|αβ , it is trivial in
H0 (s|d). Indeed, by direct computation we have

ah−t
0 = s

(
2k′
(
2t∗µαhµα + η

∗αβ|
βηα

))
+ ∂µ (−8k′t∗µαηα) ,

(202)
so it can be removed from the first-order deformation
by choosing

k′ = 0. (203)

Putting together the results contained in this section,
we can state that Sh−t

1 = 0 and so

S1 = Sh−h
1 + St−t

1 , (204)

where Sh−h
1 is the first-order deformation of the solution

to the master equation for the Pauli–Fierz theory and St−t
1

is given in the right-hand side of (116). The consistency of
S1 at the second order in the coupling constant is governed
by (57), where

(
Sh−h

1 , St−t
1

)
= 0 =

(
St−t

1 , St−t
1

)
, and thus

we have that St−t
2 = 0 = Sh−t

2 , while Sh−h
2 is highly non-

trivial and is known to describe the quartic vertex of the
Einstein–Hilbert action, as well as the second-order contri-
butions to the gauge transformations and to the associated
non-abelian gauge algebra. The vanishing of Sh−t

1 and Sh−t
2

further leads, via the equations that stipulate the higher-
order deformation equations, to the result that actually

Sh−t
k = 0, k ≥ 1. (205)

The main conclusion of this section is that, under the
general conditions of smoothness, locality, Lorentz covari-
ance andPoincaré invariance of thedeformations, combined
with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-
trivial cross-couplings between the Pauli–Fierz field and
the massless tensor field with the mixed symmetry of the
Riemann tensor. The only pieces that can be added to
the action (119) are given by the cosmological term for
the tensor tµν|αβ and, naturally, by the self-interactions of
the Pauli–Fierz field, which produce the Einstein–Hilbert
action, invariant under diffeomorphisms.

7 Interactions with matter fields

In the final part of this paper we show that the mass-
less tensor field with the mixed symmetry of the Riemann
tensor cannot be coupled in a consistent, non-trivial man-
ner to any matter theory such that the matter fields gain
gauge transformations. Indeed, let us consider a generic
matter theory

Smatt[yi] =
∫
dDxL ([yi]

)
, (206)
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where the fields yi are assumed to have no non-trivial
gauge symmetries. In this situation, the BRST differential
for the action written as the sum between (1) and (206)
acts on the BRST generators according to (46)–(50) and
respectively to

γyi = 0, γy∗
i = 0, δyi = 0, δy∗

i = − δ
LL
δyi

, (207)

where

pgh
(
yi
)

= 0 = pgh (y∗
i ) , agh

(
yi
)

= 0, agh (y∗
i ) = 1,

(208)
and y∗

i denote the antifields of the matter fields. The pres-
ence of the matter theory simply adds to H (γ) discussed
in Sect. 5.1 the dependence on yi, y∗

i and their space-
time derivatives, which lie at pure ghost number zero,
[yi], [y∗

i ] ∈ H0 (γ), and therefore we still have H2l+1 (γ) =
0. From (207) it is clear that the cross-interactions between
the tensor field tµν|αβ and the matter fields yi at the first
order in the coupling constant can be produced just by a
first-order deformation of the master equation that stops at
antighost number one, at−matt = at−matt

1 +at−matt
0 , where

γat−matt
1 = 0. However, asH1 (γ) is trivial, this fact implies

that at−matt
1 is trivial and consequently the matter fields

cannot gain gauge invariance. We remain with the sole
possibility that at−matt = at−matt

0 , with γat−matt
0 = ∂µq

µ,
whose solutions, once we add the restriction on the maxi-
mum derivative order of the cross-couplings being equal to
two, are spanned by polynomials that are simultaneously
linear in the curvature tensor (13) and of any order in the
undifferentiated matter fields.

8 Conclusion

The general conclusion of this paper is that the powerful
reformulation of interactions in gauge theories in terms of
the local BRST cohomology reveal that the massless ten-
sor field with the mixed symmetry of the Riemann tensor
admits no consistent self-interactions and, in the mean-
time, cannot be coupled in a consistent, non-trivial man-
ner to the massless spin-two field, described in the free
limit by the Pauli–Fierz theory. We also argued that the
attempt to couple such a mixed symmetry type tensor
to purely matter theories produces no gauge transforma-
tions with respect to the matter field sector. Our analysis
was constantly based on the assumptions that the result-
ing deformations are smooth, local, Lorentz-covariant and
Poincaré-invariant and on the natural requirement that the
maximum derivative order of the interacting Lagrangian
is equal to two. It is possible that the relaxation of the
last condition yields non-trivial, consistent interactions, at
least with the massless spin-two fields, in which case the
first-order formulation [13,14] of such a tensor field would
probably be a happier starting point.
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