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Abstract. Non-trivial, consistent interactions of a free, massless tensor field ¢,,,,|o3 with the mixed symmetry
of the Riemann tensor are studied in the following cases: self-couplings, cross-interactions with a Pauli-Fierz
field and cross-couplings with purely matter theories. The main results, obtained from BRST cohomological
techniques under the assumptions of smoothness, locality, Lorentz covariance and Poincaré invariance of
the deformations, combined with the requirement that the interacting Lagrangian is at most second-
order derivative, can be synthesized into the following results: no consistent self-couplings exist, but
a cosmological-like term; no cross-interactions with the Pauli-Fierz field can be added; no non-trivial
consistent cross-couplings with the matter theories such that the matter fields gain gauge transformations

are allowed.

1 Introduction

Mixed symmetry type tensor fields [1-5] are involved in
many physically interesting theories, like superstrings, su-
pergravities or supersymmetric high spin theories. The
study of gauge theories with mixed symmetry type ten-
sor fields revealed several issues, like the dual formulation
of field theories of spin two or higher [6-11], the impossibil-
ity of consistent cross-interactions in the dual formulation
of linearized gravity [12] or a Lagrangian first-order ap-
proach [13,14] to some classes of free massless mixed sym-
metry type tensor gauge fields, suggestively resembling the
tetrad formalism of general relativity. One of the most im-
portant aspects related to this type of gauge models is the
analysis of their consistent interactions, among themselves,
as well as with higher-spin gauge theories [15-19]. The best
approach to this matter is the cohomological one, based on
the deformation of the solution to the master equation [20].
The aim of our paper is to investigate the manifestly covari-
ant consistent interactions involving a single, free, massless
tensor gauge field ¢4, with the mixed symmetry of the
Riemann tensor, in three distinct situations: self-couplings,
interactions with the massless spin-two field (described in
the free limit by the Pauli-Fierz action [21]), and couplings
with purely matter theories.

Our procedure relies on the deformation of the solu-
tion to the master equation by means of local BRST co-
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homology. For each situation, we initially determine the
associated free antifield-BRST symmetry s, which splits
as the sum between the Koszul-Tate differential and the
exterior longitudinal derivative only, s = § + . Then we
solve the basic equations of the deformation procedure.
Under the supplementary assumptions of smoothness, lo-
cality, Lorentz covariance and Poincaré invariance of the
deformations, as well as of the maximum derivative order
of the interacting Lagrangian being equal to two, we prove
the following no-go results:

(i) the self-interactions of the tensor field with the mixed
symmetry of the Riemann tensor do not modify either the
original gauge algebra or the gauge transformations and,
in fact, reduce to a cosmological-like term;

(ii) there are no consistent cross-interactions between such
a tensor field and the Pauli-Fierz model. Only the Pauli—
Fierz theory leads to consistent self-interactions, described
by the Einstein—Hilbert action with a cosmological term,
invariant under diffeomorphisms;

(iii) there are no couplings with purely matter theories such
that the matter fields become endowed with gauge trans-
formations.

This paper is organized in eight sections. Section 2 is
dedicated to the Lagrangian formulation of the free mass-
less tensor gauge field with mixed symmetry of the Riemann
tensor, emphasizing its relationship with the generalized
3-differential complex. In Sect.3 we construct the associ-
ated BRST symmetry and in Sect. 4 we briefly review the
antifield-BRST deformation procedure. The following three
sections represent the core of the paper and respectively
address the problem of self-interactions, interactions with
the Pauli-Fierz field, and couplings with purely matter
fields. Section 8 ends the paper with the main conclusions.
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2 Free model
2.1 Field equations and gauge transformations

The starting point is given by the free Lagrangian action
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in a Minkowski-flat spacetime of dimension D > 5, endowed
with a metric tensor of “mostly plus” signature o,, =
o = (= ++++...). The massless tensor field t,,|o3
of degree four has the mixed symmetry of the linearized
Riemann tensor, and hence transforms according to an
irreducible representation of GL (D, R), corresponding to
a rectangular Young diagram (2, 2) with two columns and
two rows, so it is separately antisymmetric in the pairs
{p,v } and {a,B }, is symmetric under the interchange
of these pairs ({p, v } +— {a,8 }), tyvjas = tag|uw, and
satisfies the identity

tuvjalp =0 (2)

associated with the above diagram, which we will refer to
as the Bianchi I identity. Here and in the sequel the symbol
[uv . ..] denotes the operation of antisymmetrization with
respect to the indices between brackets, without normaliza-
tion factors. (For instance, the left-hand side of (2) contains
only the three terms t[,,|a18 = tuvjas + tvalus + tapvs-)
The notation ¢, 3 signifies the simple trace of the original
tensor field, which is symmetric, t,5 = 0"t |45, While ¢
denotes its double trace, which is a scalar, t = a”ﬁtl,g. A
generating set of gauge transformations for the action (1)
reads

5et;w|a/3 = a,ueamu - aveozﬁm + 8(16“145 - aﬁe;wmv (3)

with the bosonic gauge parameters €,,,|, transforming ac-
cording to an irreducible representation of GL (D, R), cor-
responding to a Young diagram (2,1) with two columns
and two rows, being therefore antisymmetric in the pair
{p,v } and satisfying the identity

€luvla] = 0. (4)

The identity (4) isrequired in order to ensure that the gauge
transformations (3) obey the same Bianchi I identity as the
fields themselves, namely, d.t[,,|q)g = 0. The above gener-
ating set of gauge transformations is abelian and off-shell
first-stage reducible since if we make the transformation

Cuvla = 2aae,uu - a[ueu]av (5)
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with 6,,, an arbitrary antisymmetric tensor (6., = —0,,.),
then the gauge transformations of the tensor field iden-
tically vanish, dct,,|o3 = 0. In the meantime, the trans-
formation (5) agrees with the identity (4) obeyed by the
gauge parameters.

The field equations resulting from the action (1) take

the form 55 )
0 — ~
sotas = g vl <0 ©)
where
T#V\aﬁ = Utuvjap
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Obviously, the tensor 7}, displays the same mixed sym-
metry properties as the tensor field ¢,,|43. It is useful to
compute its simple and double traces

" Tuvjap
=T,5=04-D) (;axap (txv1sp + taslvp)
Dt — 07 (Ot + Oity)
oaasan(prn 1))
JVBTVQ

=T=-(4-D)(3-D) (aAaPtAp — ;Dt) . (9)

Obviously, its simple trace is a symmetric tensor, while
its double trace is a scalar. The gauge invariance of the
Lagrangian action (1) under the transformations (3) is
equivalent to the fact that the functions defining the field
equations are not all independent, but rather obey the
Noether identities
050

1
H = __HH —
0 SlaB = 48 Tuvjap =0,

(10)

while the first-stage reducibility shows that not all of the
above Noether identities are independent. It can be checked
that the functions (7) defining the field equations, the gauge
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generators, as well as the first-order reducibility functions,
satisfy the general regularity assumptions from [22], such
that the model under discussion is described by a normal
gauge theory of Cauchy order equal to three.

2.2 Interpretation via the generalized 3-complex

This model describes a free gauge theory that can be in-
terpreted in a consistent manner in terms of the general-
ized differential complex [23] 25 (M) of tensor fields with
mixed symmetries corresponding to a maximal sequence of
Young diagrams with two columns, defined on a pseudo-
Riemannian manifold M of dimension D. Let us denote
by d the associated operator (3-differential) that is third-
order nilpotent, d*> = 0, and by 25 (M) the vector space
spanned by the tensor fields from (2, (M) with p entries.
The action of d on an element pertaining to 2% (M) results
in a tensor from 25" (M) with one spacetime derivative,
the action of d? on a similar element leads to a tensor from
QP+2 (M) containing two spacetime derivatives, while the
action of d® on any such element identically vanishes. In
brief, the generalized 3-complex {25 (M) may suggestively
be represented through the commutative diagram

AR

0

a2
.
Qs 4 Q]
a2 -
i
Q4 4 3
2 -
7
d
22 5 Q3
a2 -
%
29 4% 01
where the third-order nilpotency of d means that any ver-
tical arrow followed by the closest higher diagonal arrow
maps to zero, and the same with respect to any diago-
nal arrow followed by the closest higher horizontal one.
Its bold part emphasizes the sequences that apply to the

model under discussion: the first one governs the dynamics
and indicates the presence of some gauge symmetry

5 2
field % curvature % Bianchi 11,

pFuvrjjapy =0

(11)
tuvlap Fuwx\aﬁw

while the second sequence solves the gauge symmetry

23 . 2 - 2
gauge param. — gauge transf. — gauge inv. objects.
€aplp Octyuv|ap deFyvrjapy =0

(12)
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Let us discuss the previous sequences. Starting from the
tensor field ¢,,,,|o3 from 23, we can construct its curvature
tensor Fj,,x |8y, defined via

(d”t)

pray (13)

Funapy = Oa0ytuwjap + 0u0ytunjap + 0v0ytaulas
+a>\aatwlﬁv + 8uaat1/>\\ﬂv + avaatkﬂlﬁv
+0203t v |ya + Ou0sturyva + 0vOstauyas

which is second order in the spacetime derivatives and
belongs to §2§. Thus, the curvature tensor transforms in
an irreducible representation of GL (D,R) and exhibits
the symmetries of a rectangular two-column Young di-
agram (3,3), being separately antisymmetric in the in-
dices {p, v, A } and {a, B8, }, symmetric under the inter-
change {u,v,A } +— {a, 5,7 }, and obeying the (alge-
braic) Bianchi I identity

Flujajoy = 0- (14)
The action of d on F,,u)apy maps to zero,
73 _ (7 _
(@) rasy = (@F) ysasy ~ OpFuojapy =0, (15)
and represents nothing but the (differential) Bianchi IT

identity for the curvature tensor. Since the curvature and
its traces are the most general non-vanishing second-order
derivative quantities in {2, (M) constructed fromt,,,|q3, we
expect that the free field equations (6) completely rely on
it. Equation (15) shows that the corresponding field equa-
tions cannot be all independent, but satisfy some Noether
identities related to the Bianchi I identity of the curvature
tensor. This already points out that the free Lagrangian ac-
tion searched for must be invariant under a certain gauge
symmetry. The second sequence, namely (12), gives the
form of the gauge invariance. As the free field equations
involve F,, 5|8y, it is natural to require that these are the
most general gauge invariant quantities,

Se (d°t)

~ (5€Fuy>\‘a,3n/ =0. (16)

uvafy

This matter is immediately solved if we take

(dﬁ) uvaf Na,ue(xﬂw - 8116(1[3\/1, +aa€;w|ﬂ - aﬁ5uu\a:56t/Lu\aﬂv

(17)
where the gauge parameters €|, pertain to 23, because,
on account of the third-order nilpotency of d, we find that

SeFyapy ~ (d€) =0.

prAafy (18)

Clearly, the relation (17) coincides with the gauge trans-
formations (3).

We complete our discussion by exemplifying the con-
struction of the free field equations. Let us denote by
Soltuvap] a free, second-order derivative action that is
gauge invariant under (17), and by 4.5} /6t*1# its func-
tional derivatives with respect to the fields, which are im-
posed to depend linearly on the undifferentiated curvature
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tensor. Then, as these functional derivatives must have the
same mixed symmetry as ,,|qg, it follows that they nec-
essarily determine a tensor from £23. The operations that
can be performed with respect to the curvature tensor in
order to reduce its number of indices without increasing
its derivative order is to take its simple, double, and re-
spectively, triple traces,

F;J,V|aﬁ = U)\’YFMUA‘(XB"/ € ‘an (19)
F;ta = UVﬁFuu\aﬂ € an (20)
F =0!F,, € 029, (21)

where F),, is symmetric and F' is a scalar. The only com-
binations formed with these quantities that belong to 23
are generated by

Fpu\a[h (22)
UMaFﬁV - UuﬁFau - UVaFBu + UuﬁFoc/u (23)

and
(Opaous — 0u80va) F, (24)

so in principle 6.5}, /6t*|*# can be written as a linear com-
bination of (22)—(24) with coefficients that are real con-
stants. However, the requirement that the above linear
combination indeed stands for the functional derivatives
of asole functional restricts the parametrization of the func-
tional derivatives, and therefore of the Lagrangian action,
by means of one constant only,

85/ 5tm 18 = \ <F,Waﬁ

1
3 (Oualpy — oupFov — ovalipy + ovpFopu)

1
+ G (Cpatuvs — 0ua0va) F> . (25)
If in (25) we take the particular value
1
A=—- 26
- (26)

we recover the Lagrangian action (1) together with the field

equations (6). This also allows us to identify the expres-

sion of T),,|a5 from (6) and (7) in terms of the curvature
wrlap

tensor like

T

prlap
1
= Fuu\aﬂ - 5 (O-/J.QFBI/ - U,uﬁFau - UuaFﬁ;L + UVﬁFa,u)

1

*5 (0patus — 0uB0va) F) . (27)
At this point, we can easily see the relationship of the

field equations (6) and their Noether identities (10) with

the curvature tensor (13) and accompanying Bianchi IT
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identity (15). First, we observe that the field equations (6)
are completely equivalent with the vanishing of the simple
trace of the curvature tensor

Tp,u|aﬂ ~ 0 <— ijmg ~ 0. (28)
The direct statement holds due to the fact that 7,45 is
expressed only through F), .5 and its traces, such that
its vanishing implies F),,|o3 = 0. The converse implication
holds because the vanishing of the second and respectively
third component in the right-hand side of (27) is a simple
consequence of Fj,,|,3 ~ 0. Second, the Noether identi-
ties (10) are a direct consequence of the Bianchi IT identity
for the curvature tensor,

6[MFQ5,\]|W,9 =0= 8”Tuy‘a[3 =0. (29)

Indeed, on the one hand the relation (27) yields

Ty (30)

1 1 1
= 0"Fuvjap = 500F8y + 5000 (5”Fﬁ]u - 336]F) :
On the other hand, simple computation leads to

1
NP Dy Fopaljvps = —2 (3“Fw|aﬁ - 26[aFﬁ]v) , (31)

QO'Vﬁ (a#F,uzdaﬁ - éa[aFB],,> =3 (8“Fau — ;8QF> .
(32)

Thus, according to (31) and (32) we can state that the
Bianchi II identity for the curvature tensor implies iden-
tically vanishing of the right-hand side of (30), and hence
enforces the Noether identities (10) for the action (1).
Next, we point out the relation between the general-
ized cohomology of the 3-complex {25 (M) and our model.
The generalized cohomology of the 3-complex 25 (M) is
given by the family of graded vector spaces Hy (J) =
Ker (Jk) /Im (JB*’“), with £k = 1,2. Each vector space
Hy, (d) splits into the cohomology spaces ka) (22 (M),

defined as the equivalence classes of tensors from (25 (M)
that are d*-closed, with any two such tensors that differ by
a d®> F-exact element in the same equivalence class. The
spaces H f ) are not empty in general, even if M has a trivial

topology. However, in the case where M (assumed to be
of dimension D) has the topology of RP, the generalized
Poincaré lemma [23] applied to our situation states that
the generalized cohomology of the 3-differential d on ten-
sors represented by rectangular diagrams with two columns
is empty in the space (25 (RD ) of maximal two-column
tensors, H(2,?) (Qg (RD)) =0,for 1 <n < D-1 and
k = 1,2. In particular, for n = 3 and k£ = 1 we find that
H(61) ((22 (RD)) = 0 and thus, if the tensor F),, o3, With
the mixed symmetry of the curvature tensor is d-closed,
then it is also d?-exact. To put it otherwise, if this tensor
satisfies the Bianchi ITidentity 0, F),,x]jasy = 0, then there
exists an element ¢, With the mixed symmetry (2,2),
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with the help of which F},,)|a3, can precisely be written
like in (13).

Finally, we observe that the formula (27) relates the
functions defining the free field equations (6) to the curva-
ture tensor by a generalized Hodge duality. The generalized
cohomology of d on 25 (M) when M has the trivial topol-
ogy of RP together with this type of generalized Hodge
duality reveal many important features of the free model
under study. For example, if T,Ma,@ is a covariant tensor
field with the mixed symmetry (2, 2) and satisfies the equa-
tions

T yjap =0, (33)

then there exists a tensor @Hyp‘ag,y € (RD) with the
mixed symmetry of the curvature tensor, in terms of which

TWI&B = 6P872175Wp|a57 +c(0patup — 0u80ua), (34)
with ¢ an arbitrary real constant. It is easy to check the
above statement in connection with the functions (7) that

define the field equations for the model under consideration.
Indeed, direct computation provides us with ¢ = 0 and

T

iy = 50D (35)

pvplaBys
where

P

nrplaBy

= Oy ptuvllas T Talpluv]|py + OBt uvlive T Tpiytap)|uw
Toulytagllvp t Oulytag)on

—2 (av[pgu]atﬁv + 0y [u0v)alpp + Ty L0 plalsu
+0alpOuptyr T Oafudv)ptyp + Talv sty

T80 uytar + Op[uOuytap + Uﬂ[vgp]vtau) (36)

+ (0410010080 + 04(400]a08p + 0410 5a08u) T,

so that the corresponding ®,,,|.3, indeed displays the
mixed symmetry of the curvature tensor.

3 Free BRST symmetry

In agreement with the general setting of the antibracket—
antifield formalism, the construction of the BRST symme-
try for the free theory under consideration starts with the
identification of the BRST algebra on which the BRST
differential s acts. The generators of the BRST algebra are
of two kinds: fields/ghosts and antifields. The ghost spec-
trum for the model under study comprises the fermionic
ghosts 744/, associated with the gauge parameters €.z,
from (3), as well as the bosonic ghosts for ghosts C,,, due to
the first-stage reducibility parameters 6, in (5). In order
to make compatible the behavior of €., and 6,, with
that of the corresponding ghosts, we ask that 7,4, satisfy
the same properties like the gauge parameters,

(37)

Nuvla = ~Mvplas Muvla] = 0
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and that C,,, is antisymmetric. The antifield spectrum is
organized into the antifields ¢t*#*1*# of the original tensor
field and those of the ghosts, 7***® and C*#¥, of statistics
opposite to that of the associated fields/ghosts. It is un-
derstood that ¢t*#¥1% ig subject to some conditions similar
to those satisfied by the tensor field

prvlap — _pvplaB . prpv|Ba t*aﬁ\w7 trlavlalB — 0,
(38)
and, along the same lines, it is required that
n*uvla — _77*w|0t7 n*[w\a] =0, C*" = —C*"*.  (39)

We will denote the simple and double traces of t*#|*8 by

t*l/ﬁ _ Uuat*uﬂaﬁ, t*l/ﬁ — t*ﬂy’ = Uyﬁt*uﬁ. (40)
Asboth the gauge generators and reducibility functions
for this model are field-independent, it follows that the
associated BRST differential (s? = 0) splits into
s=d+7, (41)
where § represents the Koszul-Tate differential (62 = 0),
graded by the antighost number agh (agh (§) = —1), while
~ stands for the exterior derivative along the gauge orbits
and turns out to be a true differential (y* = 0) that an-
ticommutes with 0 (6 + v = 0), whose degree is named
pure ghost number pgh (pgh (v) = 1). These two degrees do
not interfere (agh (v) = 0, pgh (d) = 0). The overall degree
that grades the BRST differential is known as the ghost
number (gh) and is defined as the difference between the
pure ghost number and the antighost number, such that
gh(s) = gh(0) = gh(y) = 1. According to the standard
rules of the BRST method, the corresponding degrees of
the generators from the BRST complex are valued as

pgh (tuu\a,@) =0, pgh (nuu\a) =1, pgh (C;uj) =2,
(42)

peh (£1°7) = pgh (3y#1*) = pgh (C**) =0, (43)
agh (t,ujas) = agh (M) = agh (Cpw) =0, (44)
agh (t*””laﬁ) =1, agh (77*’“"“) =2, agh (C**) =3,
(45)
and the actions of § and v on them are given by

Yulas = Ounaply = Ounlapiu + Oalluvip — OpMuv|a:

)

Mpvia = 206Cuw = 9uChia, YO = 0, (47)
’yt*wjlaﬁ =0, ,Y,r]*;u/\oz =0, ,_Ycr*#u =0, (48)
Otpviap = 0, 0Muvja = 0, 0CL, =0, (49)

* 1 * *
Srruvias — ZTW\Oéﬁ7 on aflv _ — 40t IW|045,
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SCHH = 39, m*Hvle, (50)
with 7}, expressed in (7) and both § and ~y taken to act
like right derivations.

The antifield-BRST differential is known to admit a
canonical action in a structure named antibracket and de-
fined by decreeing the fields/ghosts conjugated with the
corresponding antifields, s- = (-,.5), where (,) signifies the
antibracket and S denotes the canonical generator of the
BRST symmetry. It is a bosonic functional of ghost number
zero involving both the field/ghost and antifield spectra,
which obeys the classical master equation

(S,8)=0. (51)
The classical master equation is equivalent with the second-
order nilpotency of s, s> = 0, while its solution encodes
the entire gauge structure of the associated theory. Taking
into account (46)—(50), as well as the actions of § and v in
canonical form, we find that the complete solution to the
master equation for the model under study reads

S = Soltuv|asl

+/de

x (t*m/laﬁ (aﬁmaﬁlv = Ounapiu + Oaluvis — aﬁ"wla)

I (204, Cy — a[#cy]a)) . (52)
The main ingredients of the antifield-BRST symmetry de-
rived in this section will be useful in the sequel at the
analysis of consistent interactions that can be added to
the action (1) without changing its number of independent
gauge symmetries.

4 Brief review of the
antifield-BRST deformation procedure

There are three main types of consistent interactions that
can be added to a given gauge theory:

(i) the first type deforms only the Lagrangian action, but
not its gauge transformations,

(ii) the second kind modifies both the action and its trans-
formations, but not the gauge algebra, and

(iii) the third, and certainly most interesting category,
changes everything, namely, the action, its gauge symme-
tries and the accompanying algebra.

The reformulation of the problem of consistent defor-
mations of a given action and of its gauge symmetries in
the antifield-BRST setting is based on the observation that
if a deformation of the classical theory can be consistently
constructed, then the solution to the master equation for
the initial theory can be deformed into

S =8+9%1+¢*S+0 (¢%), £(S) =0, gh (S) =0, (53)

such that

(5,5) =0. (54)
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Here and in the sequel € (F) denotes the Grassmann parity
of F. The projection of (54) on the various powers in the
coupling constant induces the following tower of equations:

go :(8,9) =0, (55)
g' : (51,8) =0, (56)
K %(sl,sl) + (59, 8) =0, (57)

The first equation is satisfied by hypothesis. The second
one governs the first-order deformation of the solution to
the master equation (S7) and it shows that S; is a BRST
co-cycle, sS1 = 0, and hence it exists and is local. The
remaining equations are responsible for the higher-order
deformations of the solution to the master equation. No
obstructions arise in finding solutions to them as long as
no further restrictions, such as spacetime locality, are im-
posed. Obviously, only non-trivial first-order deformations
should be considered, since trivial ones (S1 = sB) lead
to trivial deformations of the initial theory and can be
eliminated by convenient redefinitions of the fields. Ignor-
ing the trivial deformations, it follows that S; is a non-
trivial BRST-observable, S; € H (s). Once the deforma-
tion equations (56)—(57), etc., have been solved by means
of specific cohomological techniques, from the consistent
non-trivial deformed solution to the master equation we
can extract all the information on the gauge structure of
the accompanying interacting theory.

5 Self-interactions

The first task of our paper is to study the consistent inter-
actions that can be added to the free action (1) by means
of solving the main deformation equations, namely, (56)—
(57), etc. For obvious reasons, we consider only smooth,
local, Lorentz-covariant and Poincaré-invariant deforma-
tions. If we choose the notation S; = dez a, with a a
local function, then the local form of (56), which we have
seen to control the first-order deformation of the solution
to the master equation, becomes

sa =0,m*, gh(a) =0, €(a) =0, (58)

for some m*, and it shows that the non-integrated density of
the first-order deformation pertains to the local cohomology
of s at ghost number zero, a € HY (s|d), where d denotes the
exterior spacetime differential. In order to analyze the above
equation, we develop a according to the antighost number

1

a= Zak, agh (ag) =k, gh(ax) =0, e (ax) =0, (59)
k=0

and assume, without loss of generality, that a stops at some
finite value I of the antighost number.! By taking into ac-

! This can be shown, for instance, like in [26] (Sect. 3), under
the sole assumption that the interacting Lagrangian at the first
order in the coupling constant, ag, has a finite, but otherwise
arbitrary derivative order.
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count the decomposition (41) of the BRST differential, (58)
is equivalent to a tower of local equations, corresponding
to the various decreasing values of the antighost number

ks

yar =0, m (60)
(I-n*
dar +yar_1 = (Q)IL m (61)
(k=1)H
dag +yap—1 =90, m  ,I-1>k>1, (62)
(k¥ .
where m are some local currents, with
k=0,

vz
agh ((m) = k. It can be proved? that one can replace (60)

at strictly positive antighost numbers with

~var =0, I >0. (63)
In conclusion, under the assumption that I > 0, the rep-
resentative of highest antighost number from the non-
integrated density of the first-order deformation can al-
ways be taken to be v-closed, such that (58) associated
with the local form of the first-order deformation is com-
pletely equivalent to the tower of equations (63), and (61)
and (62).

Before proceeding to the analysis of the solutions to
the first-order deformation equations, we briefly comment
on the uniqueness and triviality of such solutions. Due to
the second-order nilpotency of v (72 = 0), the solution to
the top equation (63) is clearly unique up to y-exact con-
tributions,

ar — ar + by, agh(by) =1, pgh(by)=1-1, e(by) = 1.

(64)
Meanwhile, if it turns out that a; reduces to y-exact terms
only, aj = by, then it can be made to vanish, ay = 0.
In other words, the non-triviality of the first-order defor-
mation a is translated at its highest antighost number
component into the requirement that

ar € H' (), (65)
where H () denotes the cohomology of the exterior lon-
gitudinal derivative v at pure ghost number equal to 1. At
the same time, the general condition on the non-integrated
density of the first-order deformation to be in a non-trivial
cohomological class of H (s|d) shows on the one hand
that the solution to (58) is unique up to s-exact pieces plus
total divergences:

a — a+sb+0,n",
gh(b) = —1, £(b) = 1, gh(n") = 0, £ (n*) = 0,

and on the other hand that if the general solution to (58)
is found to be completely trivial, a = sb + 9,n*, then it
can be made to vanish, a = 0.

In the light of the above discussion, we pass to the
investigation of the solutions to (63), and (61) and (62). We

(66)

2 The proof is given in Corollary 3.1 from [27].
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have seen that a; belongs to the cohomology of the exterior
longitudinal derivative (see (65)), such that we need to
compute H (y) in order to construct the component of
highest antighost number from the first-order deformation.
This matter is solved with the help of the definitions (46)—
(48).

5.1 H (v) and H (4|d)

The formula (48) shows that all the antifields

X*A _ (t*yu\aﬁ7 ,r}*;u/\a, C*,uu) (67)
belong (non-trivially) to H° (). From the definition (46)
and recalling the general discussion from Sect.2 on the
relationship between the model under investigation and
the 3-differential complex, we infer that the most general
~-closed (and obviously non-trivial) elements constructed
in terms of the original tensor field are the components of
the curvature tensor (13) and their spacetime derivatives,
so all these pertain to H ().

Using the first definition in (47), we notice that there
is no ~-closed linear combination of the undifferentiated
ghosts of pure ghost number one. On behalf of the same
definition, we investigate the existence of -closed linear
combinations in the first-order derivatives of these ghosts.
By direct computation, it is easy to see that the most general
~-closed quantities in the first-order derivatives of the pure
ghost number one ghosts have the mixed symmetry of the
tensor field ¢, itself

M

urlaB = 6u77aﬁ|1/ - 6117704[3“1, + ao/r];wm - 3,677;“4&- (68)

However, with the help of (46) it is obvious that M, |43
is y-exact, M, jap = Yluvjap, and thus it must be dis-
carded from H' () as being trivial. Along the same line,
one can prove that the only ~-closed combinations with
N > 2 spacetime derivatives of the ghosts 7,,|, are actu-
ally polynomials with (N — 1) derivatives in the elements
M, a3, s0 they are y-exact, and hence trivial in H (v).
In conclusion, there is no non-trivial object constructed
out of the ghosts 7,,|, and their derivatives in H! (v),
which implies that H' (7) = 0 as there are no other ghosts
of pure ghost number equal to one in the BRST complex.
The BRST complex for the model under consideration con-
tains no other ghosts with odd pure ghost numbers, so we
conclude that

H* 41 () =0, foralll > 0. (69)

The definitions (47) show that the undifferentiated
ghosts of pure ghost number equal to two, C,,,, belong
to H (7). The vy-closedness of C,,,, further implies that all
their derivatives are also y-closed. Let us see which of these
derivatives are trivial. Regarding their first-order deriva-
tives, from the first relation in (47) we observe that their
symmetric part is y-exact

1
a(p,C’l/)oz =7 <_377a(p,1/)> ’ (70)
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where (uv...) denotes plain symmetrization with respect
to the indices between brackets without normalization fac-
tors, such that 9,C,), will be removed from H (). Mean-
while, their antisymmetric part 9, C,), is not y-exact, and
hence can be taken as a non-trivial representative of H (vy).
After some calculations, we find that all the second-order
derivatives of the ghosts for ghosts are y-exact:

1
757 (3 (9atuwip + Opmuvia) + i) als)) -
(71)
and so will be their higher-order derivatives. In conclusion,
the only non-trivial combinations in H () constructed from
the ghosts of pure ghost number equal to two are polyno-
mials in Cy,,, and 9,C,),. Combining this result with the
previous one on HY () being non-vanishing, we have ac-
tually proved that only the even cohomological spaces of
the exterior longitudinal derivative, H? (v) with [ > 0, are
non-vanishing.

Under these circumstances, it follows that (63) pos-
sesses non-trivial solutions only for I = 2.J, where the
general form of asy for J > 0 is (up to irrelevant, y-exact
contributions)

0005C =

ar = azg = Qg ([X*A]v [Ful//\\aﬁ’y]) QQJ(CMM a[ucu]a)v
J >0, (72)

where the notation f ([¢]) means that f depends on ¢ and its
spacetime derivatives up to a finite order. The coefficients
Q9 y are 7y-invariant:

yagy =0, (73)
and exhibit the properties € (asy) = 0, pgh (ass) = 0 and
agh (aay) = 2J, while the symbol €2/ stands for a generic
notation of the elements with pure ghost number equal
to 2J of a basis in the space of polynomials in C,, and
9uCy)a- The objects aay (obviously non-trivial in HO (v))
were taken to have a bounded number of derivatives, and
therefore they are polynomials in the antifields x*4, in
the curvature tensor F,,z[agy, as well as in their deriva-
tives. Due to their y-closedness, they are called invariant
polynomials. At zero antighost number, the invariant poly-
nomials are polynomials in the curvature tensor F,,z|asy
and its derivatives. The result that we can replace (60) with
the less obvious one (63) is a nice consequence of the fact
that the cohomology of the exterior spacetime differential
is trivial in the space of invariant polynomials at strictly
positive antighost numbers. This means that if the invari-
ant polynomial « of strictly positive antighost number is
annihilated by d, then it can be written like the d-variation
of precisely an invariant polynomial. For details, see Sect. 3
in [27].

Replacing the solution (72) in (61) for I = 2J and
taking into account the definitions (47), we remark that a
necessary (but not sufficient) condition for the existence
of (non-trivial) solutions asy_1 is that the invariant poly-
nomials agy from (72) are (non-trivial) objects from the
local cohomology of the Koszul-Tate differential H (d|d)
at antighost number 2J > 0 and pure ghost number equal

C. Bizdadea et al.: Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor

to zero®, aay € Hay (8]d), i.e.

dagy = 0uj", e (j*) =1, agh (j) = 2J -1, pgh(5*) = 0.
(74)
Consequently, we need to investigate some of the main
properties of the local cohomology of the Koszul-Tate dif-
ferential at pure ghost number zero and strictly positive
antighost numbers in order to completely determine the
component as; of highest antighost number in the first-
order deformation. As we have discussed in Sect. 2, the free
model under study is a normal gauge theory of Cauchy or-
der equal to three. Using the general results from [24] (also
see [12] and [25,26]), one can state that the local cohomol-
ogy of the Koszul-Tate differential at pure ghost number
zero is trivial at antighost numbers strictly greater than
its Cauchy order
Hy (0|d) =0, k> 3. (75)
Moreover, if the invariant polynomial «y, with agh (ay) =
k > 3, is trivial in Hy (4|d), then it can be taken to be
trivial also in Hi™ (d|d)

(k)
ap =0bg1+0, ¢ , agh(ag)=k>3) =
(k)

ar =60ky1 +0, 7V, (76)

n
where [j+1 and (’I;) are invariant polynomials. [An element
of Hi™v (8|d) is defined via an equation similar to (74) for
2J — k, but with the corresponding current an invari-
ant polynomial.] The result (76) is proved in Theorem 4.1
from [27]. It is important since it together with (75) en-
sures that all the local cohomology of the Koszul-Tate
differential in the space of invariant polynomials is trivial
in antighost numbers strictly greater than three,

H™ (§|d) =0, k > 3. (77)
Using the definitions (50), we can organize the non-trivial
representatives of (Hj (0]d)),~, (at pure ghost number

equal to zero) and (H™ (6]d)), -, as

non — trivial representatives

agh spanning Hy, (§|d) and H™ (8|d)
k>3 none (78)
k=3 c*mv
k=2 n*uu|oz

With the help of the above representatives we can construct
in principle other non-trivial elements from H (§|d) and
H™ (§]d) at strictly positive antighost numbers, which ex-
plicitly depend on the spacetime co-ordinates. For instance,
the object nzy‘a fHYx®, with f*” some antisymmetric con-

stants, belongs to both Hy (§|d) and Hi* (6|d). However,

3 We recall that the local cohomology H (§|d) is completely
trivial at both strictly positive antighost and pure ghost num-
bers (for instance, see [24], Theorem 5.4 and [28]).
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we will discard such elements during the deformation pro-
cedure, since they would break the Poincaré invariance of
the interactions. In contrast to the groups (Hy (6]d));~o
and (H™ (8]d))
homology H; (§|d) at pure ghost number zero, that is re-
lated to global symmetries and ordinary conservation laws,
is infinite-dimensional since the theory is free. Fortunately,
it will not be needed in the sequel.

The above results on H (§|d) and H'™ (§|d) in strictly
positive antighost number are important because they con-
trol the obstructions to removing the antifields from the
first-order deformation. Indeed, due to (77) and (69) we can
successively eliminate all the pieces of antighost number
strictly greater than two from the non-integrated density
of the first-order deformation by adding only trivial terms
(for details, see Sect. 5 from [27]), so we can take, without
loss of non-trivial objects, the condition

p>o0 Which are finite-dimensional, the co-

0<I=27<2 (79)

in the development (59), which leaves us with a single
eligible, strictly positive value, I = 2J = 2.

5.2 The case I = 2

Thus, for I = 2J = 2 we finally obtain that the expan-
sion (59) becomes

a=ag+ai + as, (80)

where its last component is written (up to y-exact objects)
in the form

az = g ([t*wjlaﬁ]v [n*uuka [F,uu)\\ozﬁ'y]) 62 (C,ul/aa[,ucu]a) 3
(81)
with the elements of pure ghost number two spanned by

(va 8[ucu]a) : (82)

Taking into account the result from (78) at k = 2, we get

az =1y 0 (F17Cpn + 0500, (83)
where f*7*P7 and fr*P7* must be non-derivative con-
stants. In the meantime, f**#7 and f#***#7* cannot be
antisymmetric in all indices {y, v, & } (because in this event
the identity n*l*1*] = 0 maps the corresponding terms to
zero), which eventually leaves one candidate for as:

ag = cn*“”laa[ucy]a, (84)
with ¢ an arbitrary real constant. However, this term is
easily shown to be trivial (y-exact) on account of the first
definition in (47) and of the identity n**I1*l = 0, which
allows us to add to as any quantity proportional with
n*“”'aa[#C,,a] since it vanishes identically,

Cn*,u,u|o¢a[u C]/]a
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=cn ul (a[,ucu]a - 38[010;1,1/]) =7 <_§77 wrl 77,uL/|a) ;
(85)
and so it can be discarded from (84) by setting

c=0. (86)
So far we have shown that there is no non-trivial as in the
right-hand side of (80),

ag = 0. (87)
It is worth noticing that at this stage we have not used any
a priori restriction on the number of derivatives from ao,
except that it is finite, but only the general requirements
of smooth, local, Lorentz-covariant and Poincaré-invariant
deformations. The assumption that the interactions contain
at most two derivatives will only be needed below.

5.3 Thecase I =0

Consequently, we pass to the next value of the maximum
antighost number in the expansion (59), which, according to
the restriction (79), excludes the value I = 1. Thus, we are
only left with the possibility that the non-integrated den-
sity of the first-order deformation reduces to its antighost
number zero component, which is nothing but the deformed
Lagrangian at the first order in the coupling constant

a = ap ([tul/\aﬁ]) ) (88)
which must obey the equation
yag = 9,mt. (89)

There are two main types of solutions to the last equation.
The first one corresponds to m* = 0 and is given by func-
tions in the field ¢, and its derivatives that are invariant
under the gauge transformations (3). As the components of
the curvature tensor are the most general gauge invariant
objects, it follows that

vag =0 = ay = agy ([Fuuxjap,]) - (90)
At this point we demand that the deformed gauge theory
preserves the Cauchy order of the uncoupled model, which
enforces the requirement that the interacting Lagrangian
is of maximum order equal to two in the spacetime deriva-
tives of the tensor field ¢,,,|o5 at each order in the coupling
constant. In turn, this requirement leads to aj, = 0 (we have
excluded the solutions linear in [F},,xja3+], as they obvi-
ously reduce to total divergences, and thus give a vanishing
S1).

The second type of solutions is associated with m* # 0,
it being understood that we maintain the restriction on the
derivative order of ag and discard the divergence-like solu-
tions ag = J,u*. Denoting the Euler-Lagrange derivatives
of ag by AM1°F = §ag/t,, 05 and using (46), (89) im-
plies that

9 A1 =0, (91)
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where the tensor A*1%8 is imposed to contain at most two
derivatives, to have the mixed symmetry of ¢,,,3 and to

fulfill the Bianchi I identity Al¥118 = 0,
According to the discussion from the end of Sect.2
(see (33)—(34)), the general solution to (91) is

6t5a0 = AmvleB _ 3p37¢w/p\aﬁw+c (Guagvlﬁ_ouﬁaua) ,
wvlap

(92)
where @#P1*87 has the mixed symmetry of the curvature
tensor. The second term in (92) is non-trivial and generates
a cosmological-like term

aél) = 2ct, (93)
where ¢ is the double trace of the tensor field t,,|o3. It
verifies the equation

'yaél) = 8Hm(1)“, mWH = SCn"ala, (94)
so we can write ) )
ao = a§”) +af?, (95)
with
yag) = Bmn (96)
and @
Oag = 0,0, prvrleas (97)
5t#”|0¢5 r

In the sequel we investigate the form of a(()2). Imposing

that ArvleB contains at most two derivatives, we find that
drveleBY inyolves only the undifferentiated tensor field
tuvlap- Let N be a derivation in the algebra of the fields
tuvjap and of their derivatives that counts the powers of
the fields and their derivatives, defined by

0
(8u1 - '8ﬂnt;w|aﬁ) '

N = Z (aﬂl e aﬂntlﬂ’mﬁ) a (98)

n>0

Then, it is easy to see that for every non-integrated density
u, we have

ou
Nu:t#,,‘aﬁr +8#8’u'7 (99)
uvlapB
where 0u/6t,, o3 denotes the variational derivative of w.
If u is a homogeneous polynomial of order p > 0 in the

fields and their derivatives, then Nu = pu, such that

1 ou

1
L ()
p prlap &W‘aﬁ w D

(100)

As aéQ) can always be decomposed as a sum of homoge-
neous polynomials of various orders in the fields and their
derivatives, it is enough to analyze (96) for a fixed value

of p. Setting u = a(()2) in (100) and using (97), we find that

1 ~
al? = ];t,w‘aﬁa,,avqu‘aﬁv +8,5. (101

C. Bizdadea et al.: Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor

Moving the derivatives from @ in (101) and taking into
account the mixed symmetry of $**?o87 e infer that

a$? = kF 0y @17 1 8,10, (102)

with k£ = 1/9p. Acting now with v on (102), we obtain

oPprvelaBy

2
’Yaé ) _ —4knen|0s (FWPIGBW Otsele
elén

> +0,1", (103)

for some [*. From (103) we observe that a((f) satisfies (96)
if and only if

prvplaBy
oo ) =0. (104)

s <Fuypocﬁ"/ m

Since the quantity between parentheses in (104) has the
same mixed symmetry as the tensor field ts¢,, with the
help of the relations (33)—(34) we determine that

oPprvelaBy
F,

s )
Wﬂlaﬁvm = 0,000 plent

(105)

for some 12%1€7% with the mixed symmetry of the curvature
tensor, which depends only on the undifferentiated tensor
field t,,|q3. Computing the left-hand side of (105), we
arrive at

oPprvelaBy
F

oPprvelapd
pvplaBy W

= 0,09 <9t’“’|aﬁ8t§5
elén

H2Pprvelaby
OtselenOtore i
x (2 (6ptwlaﬁ) (3~/t5's'|g'n') + tw\aﬁﬁpa’vté’s’lﬁ’n’)
93 Prvelaby

-9
at(gslgn 8t5’€’ ‘5/7]/ 8t5//€// |§”7]”

Xt,uu|a5 (apt5/5/|§/n/) (apytéllell‘f//n//) .

The right-hand side of (106) can be written in the form of
the right-hand side from (105) if and only if

(106)

HPprvelaso
Iplap—— = P (107)
8t56|§,7
92PHveloBy
_—— =0, (108)
OtselenOtser (g
93 Prvelaby
=0.

at65|§n Otsrer €’ Otgien &

On the one hand, the requirements (108) restrict @r+rlafv
to be linear in ¢,,,|,3 and, on the other hand, we have the
condition that @*#1*A7 has the same mixed symmetry as
the curvature tensor. These considerations fix #7157 to
be precisely of the type

prvelaby — klgpwplaﬁv’ (109)
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where &’ is a real constant and @**?1*87 is the tensor (36)
involved in the functions (35) that yield the free field equa-
tions. Meanwhile, (109) fixes the value of p from (101) to
p = 2. By direct computation we deduce that (107) is also
satisfied and get that

ql)&stp\{vyé — 9k/¢55<ﬂ|5n9_ (110)

Inserting (109) in (101) for p = 2, due to (35) we infer that
a$? = Kt asTH1P + 0,00, (111)

and hence (111) is (up to an irrelevant divergence) propor-
tional to the original Lagrangian. This solution is however
trivial in H° (s|d) since it can be expressed as

ai? = sb+ d,vt, gh(b) = —1, gh(v*) =0,  (112)
where
b = 4]{}/ (t*ﬂu‘aﬁtuylaﬁ + n*ﬂu‘anyﬂa + C*,UJJCHV> ’
(113)

- (l” — 16K By, — 12k’n*aﬂlﬂca@) . (114)

Then, in agreement with the discussion from the beginning
of this section, the solution (112) can be safely removed
from the first-order deformation by replacing it with

a? =0. (115)
From (93) for ¢ = 1/2, using (95), and relying on the results
contained in the previous subsections, we conclude that

Sl = /dDIt

represents the only non-trivial first-order deformation of
the solution to the master equation for the tensor ¢,,,|qs-
Moreover, it is consistent to all orders in the coupling
constant. Indeed, as (S1,S1) = 0, the equation (57) that
describes the second-order deformation is satisfied with
the choice

(116)

So =0, (117)

while the remaining higher-order equations are fulfilled for

S3=85,=...=0, (118)
and hence there are no non-trivial self-interactions for the
tensor field #,,,|qg-

The main conclusion of this section is that, under the
general conditions of smoothness, locality, Lorentz covari-
ance and Poincaré invariance of the deformations, combined
with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-
trivial self-interactions for the massless tensor field with
the mixed symmetry of the Riemann tensor. The only
piece that can be added to the original Lagrangian is a
cosmological-like term, which does not modify the original
gauge transformations.
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6 Interactions with the Pauli-Fierz theory

We have argued in the previous section that there are no
consistent self-interactions that can be added to the free
action of the massless tensor field ¢,,,,|o 5. In the sequel we in-
vestigate if there exist local, smooth, Lorentz-covariant and
Poincaré-invariant, consistent interactions between such a
tensor field and a non-interacting massless spin-2 field h,,,,,
described by the Pauli-Fierz action [21]. We maintain the
restriction on the maximum derivative order of the inter-
actions being equal to two. The self-interactions of a single
massless spin-2 field have been extensively studied in the
literature and are known to lead to the Einstein—Hilbert
action with a cosmological term. We will mainly focus on
the cross-couplings, i.e. on the interactions that mix the
fields ¢,,,|as and hy,, and will not insist on the cohomo-
logical construction of the Einstein—Hilbert action with a
cosmological term, which can be found in detail in [25].

6.1 Free model and accompanying BRST symmetry

We start from a free action, written as the sum between (1)
and the Pauli—Fierz action in D > 5 spacetime dimensions:

SO[tuu\aﬁv huu] = SO[tuu\aﬁ] + S(I?F[huu]v (119)
with
S,

o

“lhy]

= / dPz <; (071 (Bphy) + (B,h") (87D,

- @0 (@) + 5 @M. (120

where h,,,, is symmetric and h denotes its trace. The ac-
tion (120) is invariant under the abelian and irreducible
gauge transformations

dehyy = 8(H6V). (121)

The presence of the gauge transformations (121) shows
that the functions that define the field equations of the
Pauli-Fierz action

5SEF
5h/tu
are not all independent, but satisfy the Noether identities

0" H,, = 0. (123)

=-2H,, =0 (122)

In the above, H,,,, represents the linearized Einstein tensor

1

io',uyKa Hp,l/ =
with K, the linearized Ricci tensor and K the linearized
scalar curvature, which are defined with the help of the
linearized Riemann tensor

H,, =K, — (124)

Vs

1
Kyjag = =5 (0uahus—0,0ahys—0u08hva-+0,05h0)
(125)
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via its simple and, respectively, double trace K, = K a/tl v
K = K*,. The linearized Riemann tensor K ,,|,g exhibits
the same symmetries and satisfies the same identity (2) as
the tensor field ¢,,|43, but in addition fulfills the Bianchi
IT identity

G[AKW] laB =0. (126)

The most general gauge invariant objects that can be con-
structed from h,,, are the linearized Riemann tensor K|z
and its spacetime derivatives. The Pauli—Fierz action alone
describes a free gauge theory of Cauchy order equal to two,
so the Cauchy order of the theory (119) is equal to three.

The main features of the Pauli-Fierz theory can be
understood in an elegant fashion via the generalized differ-
ential complex (2, (M) introduced in Sect. 2. An interesting
result refers to the generalized cohomology of d on {25 (M),
where M has the trivial topology of R”, combined with
the operation of generalized Hodge duality. Let us con-
sider a symmetric, covariant tensor field H*¥, subject to
the equation

0, H" = 0. (127)

Then there exists a tensor @*/"8 with mixed symmetry
of the linearized Riemann tensor, such that

HM = 0,050110 4 cotv, (128)

with ¢ an arbitrary real constant. The above statement
can easily be verified with respect to the linearized Einstein
tensor (124), which satisfies the Noether identity (123) and
can indeed be written in the form (128) for ¢ =0

H" = §,05011"8 (129)
where the corresponding #*# reads
1
Pl = o (=W o 4 h o hPa(130)

—hBghv 4 (U’“’oaﬁ — Ua”a”ﬁ) h) .

The overall BRST complex comprises the BRST gen-
erators introduced in Sect. 3 and associated with the the-
ory (1), as well as the Pauli-Fierz field h,,,, the fermionic
ghost 1, corresponding to the gauge invariances of (120),
together with the antifields h**” and n** from the Pauli-
Fierz sector. The BRST differential of the entire free gauge
theory splits like in (41), where the actions of v and § on
the former BRST generators are expressed by (46)—(50),
while on the latter ones are defined by

Yhuw = Ouivys Yu = 0, 131)

(
YR =0 =yn**, (132)
Shpy = 0 = 81, (133)
Sh* = 2H,,, on't = —20,h*"". (134)

The pure ghost number and antighost number of the BRST
generators can partially be found in (42)—-(45), while for the
Pauli-Fierz field/ghost/antifield sector they are given be-
low:

pgh (hu) =0, pgh(n,) =1,
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pgh (h**) = 0 = pgh (n*"), (135)
agh (h,,) = 0 = agh (n,), agh (") =1,
agh (n**) = 2. (136)

In agreement with the general line of the antifield-BRST
method, the free BRST differential s for the theory (119)
is canonically generated in the antibracket (s- = (-, S)) by
the solution to the master equation (S,S) = 0, which in
our case has the form

S =5'4 5 (137)

where S* is given by the right-hand side of (52) and

St = S [h,L] + / dPx K O,y (138)

6.2 First-order deformations: H (v) and H (4|d)

In order to determine the solution to the local first-order de-
formation equation (58), we proceed like in Sect. 5, namely,
we expand the non-integrated density according to the
antighost number as in (59) and solve the equivalent tower
of equations, given by (63), and (61) and (62). It is conve-
nient to split the first-order deformation into

a=a"M 4 a7 4o (139)
where a"? denotes the part responsible for the self-inter-
actions of the Pauli-Fierz field, a'~* is related to the de-
formations of the tensor field ¢4, and a"~* signifies the
component that describes only the cross-interactions be-
tween hy,, and t,,,|og- Then, a" is completely known (for
a detailed analysis, see for instance [25])

"= b T b (140)
where
ay™" = 0 Oytta, (141)
Al ™" = —h 0 (Duhya + Oyhyo — Oahy), (142)
and af ™ is the cubic vertex of the Einstein-Hilbert La-

grangian plus a cosmological term. The piece a*~* has been
computed in the previous section and is given by the right-
hand side of (116). Inserting (139) in (58) and using the fact
that the first two components already obey the equations

sa™™ =9 ut, st = 90", (143)

it follows that only a"*

the equation

is unknown, being subject to
sa" ™t = 9 wh. (144)

If we develop aP~* according to the antighost number

agh (ai ) =k,
(@) (145)

eh (a)™) =0, () =0
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(the expansion (145) can be assumed, like in the previous
section, to end at a finite value of the antighost number,
once we require that afi~* is local), then (144) is equivalent
to the tower of equations4

Yaht =0, (146)
I—1)*
sa =t 4 yayt = 0, ' (147)
h—t h—t (k—1)*
da, " Hvap_] =0, w' ,I-1>k>1, (148)
k)M I

where ((w )p=o7 are some local currents, with agh(w ) =
k.

Equation (146) shows that a"~* € H (), such that
on the one hand its solution is unique up to trivial (-

exact) contributions, a};*t — ct}}*t + 'yb}ft, and on the
other hand every purely y-exact solution a}I’_t = ’yb?‘t

can be taken to vanish, a?™* = 0. In order to infer the
general solution to this equation, we initially examine the
structure of H (). To this end, from (48) and (132) we
observe that all the antifields

w*@ — (t*uu\aﬁ7 h*uy7n*uy|a7n*u’ C*;J,V) ; (149)

and their spacetime derivatives belong to H° (). Mean-
while, the definition (46) and the first relation in the for-
mula (131) yield the most general y-closed (and obviously
non-trivial) objects constructed from the original tensor
fields as the curvature tensor (13), the linearized Riemann
tensor (125), and their derivatives. Consequently, H® (v) is
spanned by arbitrary polynomials in w*®, Fuozasys Kuvjap
and their derivatives. From (131), we observe that the undif-
ferentiated Pauli-Fierz ghosts 77, and their antisymmetric
first-order derivatives d},1,) belong to H (), while the sym-
metric part of their first-order derivatives is y-exact (see
the former relation in (131)), and so are all their second-
and higher-order derivatives since

1
0aOpMu = 37 (Oahpy — Ophag) - (150)

We have shown in Sect. 5 that the other set of pure ghost
number one ghosts, related to the tensor field |43, brings
no contribution to H (). In conclusion, the presence of the
Pauli-Fierz field enriches the cohomology of v, which is no
longer trivial at odd pure ghost numbers, as it happened
in the case of the tensor field ¢, alone. Regarding the
ghosts of pure ghost number equal to two, we have seen in
the previous section that the only combinations in H (v)
constructed from them are polynomialsin Cy,,, and 9,C) -
Thus, the general solution to (146) is expressed (up to ~-
exact objects) by

ay~t = o " (W, [Fuurjapy), (K uvjas))

4 The fact that it is possible to replace the equation 'yai,‘*t =

H
O i with (146) can be done like in the proof of Corollary
3.1 from [27].
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xw! (nuaa[unv]acuuaa[ucu]a) ) (151)

for I > 0, where the y-invariant coefficients a?_t aresubject

to the conditions agh (a}}*t) = I and pgh (al}ft) = 0, while
the symbol w! stands for a generic notation of the elements
with pure ghost number equal to I of a basis of polynomials
in the corresponding ghosts and their antisymmetric first-
order derivatives. In addition, every term in a}}_t must
contain at least one element from each of the two theories
in order to provide effective cross-interactions. As they
have a bounded number of derivatives, the quantities a}}_t
are in fact polynomials in the antifields, in the curvature
tensor (13), in the linearized Riemann tensor, and in all
their derivatives. They represent the most general non-
trivial elements from H (vy) at pure ghost number zero and
will again be called “invariant polynomials” (for the larger
free gauge theory (119), subject to the gauge symmetries (3)
and (121)).

Substituting the solution (151) into the next equation,
namely (147), and taking into account the definitions (46)—
(50) and (131)—(134), we obtain the result that a necessary
condition for (147) to possess (non-trivial) solutions with

respect to a};j for I > 0 is that the invariant polynomi-

als a}l’ft appearing in (151) are non-trivial elements from
Hy (8]d), 6" = 9, k*. Taking into account the fact that
the maximum Cauchy order of the free gauge theory (119)
is equal to three, we have [24, 26]

H,, (5]d) =0, k > 3.

Meanwhile, the result remains valid that if the invariant
polynomial o ™" is trivial in Hy, (6|d) for k > 3, then it can
be chosen to be trivial also in Hi"" (6|d)®, which combined
with (152) allows us to state that

H™ (§|d) =0, k >3, (153)

where H;™ (6|d) denotes, just like before, the local coho-
mology group of the Koszul-Tate differential at antighost
number k in the space of invariant polynomials. On account
of the definitions (50) and (134), we are able to identify
the non-trivial representatives of (Hy, (8|d)),~,, as well as

of (H™ (4]d))

(152)

p>oo under the form

non — trivial representatives
spanning Hy, (§|d) and Hi™ (8]d)

k>3 none (154)
k=3 crrv
k=2 n*uu|a7n*u

We will exclude, as we did before, all non-trivial elements
from H (6|d) and H™ (§|d) at strictly positive antighost
numbers that involve the spacetime co-ordinates, as they
would result in interactions with broken Poincaré invari-
ance. As for the cohomological group H; (|d), its determi-
nation is a difficult task, but we will solve the deformation
equations without explicitly computing it.

5 The proof can be realized in the same manner as that of
Theorem 4.1 from [27], with the precaution to include in an
appropriate manner the dependence on the Pauli-Fierz sector.



266

Like in the case of the tensor field ¢ uv|aB alone, the coho-
mology groups Hy, (§|d) and HI™ (§|d) at strictly positive
antighost numbers give us information on the obstructions
to remove the antifields from the first-order deformation.
As a consequence of the result (153), we can eliminate all
the terms with k£ > 3 from the expansion (145) by adding
to it only trivial pieces and thus work with I < 3. This
can be done in principle like in Sect. 5 from [27], up to the
following observations:

(1) the cohomological spaces (H?* (7))
trivial;

(2) the operator D should be extended to the Pauli-Fierz
ghost sector like in the Appendix A.1 from [25]. The last
representative of (145) is of the type (151), with the corre-
sponding invariant polynomials necessarily non-trivial in
H™ (§|d) for I = 2,3, and respectively in Hj (d|d) for
I=1.

|50 are no longer

6.3 Thecase I = 3

In view of the above considerations we can assume that the
expansion (145) stops at antighost number three (I = 3),

h—t h—t h—t h—t h—t
a =ay “+a; +ay “+az

(155)
where aj " is of the form (151) for I = 3. At this point we
enforce the assumption on the maximum derivative order
of the corresponding ala_t to be equal to two. Using the
result that the most general representative of H3™ (4|d) is
the undifferentiated antifield C**# (see (154) for k = 3)
and that the elements of pure ghost number three that
fulfill the condition on the maximum derivative order are
given by

(77#77V77pv Ny O Cuw s Crv O] O CV]pm) » (156)

we can write down that the general solution to (146) for
I =3 is like

h—t
as

*Qy v vpA v
=Crof (f{‘aénwunp + Faaf Mt Olpnn) + G1aCurmo

G5ty Crv Oy + 9§Z§A3[u0u1pm) +qbs,  (157)
where all the coefficients of the type f and g are required
to be non-derivative constants. Combining this result with
the symmetries of the various coefficients due to the cor-
responding symmetries of the antifield and of the ghosts,
we remain with the following independent possibilities in
D > 5 spacetime dimensions:

h—t (1)h—t

_ (2)h—t
as = das

4 a Yh—t

+aP" (158)

where in D =5
= PP Gy (c +diCpum,) + 05
ap 1M Tp 1CuuTlp Y03 73
(159)

agl)h—t
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inD=6
a:(f)h_t = €°‘ﬂ”'/p/\C25 (c2mum Oppm (160)
+daCru Oy + 30, o) + 705
in all D > 5°
af?" " = "0 (cgnan® Dy, + daCoP s (161)

+d50,Ca)pn” + d68[pca]ﬁ77p) + Vbi(’)g)'

In the above all ¢, and d,, are real constants. Obviously,
since aj ' is subject to (147) for I = 3 and the compo-
nents (159)—(161) are mutually independent, it follows that
each of them must separately fulfill such an equation, i.e.,

&lgi)h—t _ _,yagi)h*t + (9uw(i)u7 i=1,2,3. (162)

(i)h—t

By computing the action of § on <a3 ) and using
i=1,2,

the definitions (47) and (131), we infer that none of them
can be written like in the right-hand side of (162), no matter
what (bgi)> 4 we take in the right-hand side of (159)-

1=1,2,3
(161), such that we must set all the nine constants equal
to zero:

em=0,m=1,23 d,=0,n=1234,56, (163)
and so aj " = 0.
6.4 The case I = 2
We pass to the next eligible value (I = 2) and write
A"t =af T et el (164)

Repeating the reasoning developed in the above, we see
that ag_t is, up to trivial ~-exact contributions, of the
form (151) for I = 2, with the elements of pure ghost num-
ber two obeying the assumption on the maximum number
of derivatives from the corresponding ag_t being equal to
two expressed by

(nunw NuOnp)s Cuvs a[uCV]p) : (165)
Using the fact that the general representative of Hi"™ (§|d)
is spanned in this situation by the undifferentiated antifields
P17 and 7*® (see (154) for k = 2), to which we add the
requirement that ag_t comprises only terms that effectively
mix the ghost/antifield sectors of the starting free theories,
and combining these with (151), we obtain

ay b =y (%Zm%m + géggfy"ﬂa[”"”]) (166)

6 Another possible term in aé3)h_t would be d7C*°‘ﬁ8[pCa]pn5,

but it is trivial since it can be written like y (f %7 C*O‘ﬁnampng) ,

h—t

and thus we have discarded it from a3~ " by putting d7 = 0.
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+0" (g5 Crw + gl 0, Coip) + b2,

where the coefficients denoted by g are imposed to be
non-derivative constants. Taking into account the identity
n*l*81") = 0 and the hypothesis that we work only in D > 5
spacetime dimensions, we arrive at”

3 J . o,
ay~" = S0 Oamam + 5 O Oramgn® + b
(167)
We will analyze these terms separately. The first one leads
to non-vanishing components of antighost number one and

respectively zero as solutions to the equations

(n* (0)*
day "t +ya Tt =0, W', da T v yay Tt =0, W'
(168)
where we introduce the notation
h 4
ay' ™' = §ﬁ*°‘ﬁl”3[anﬁ]m~ (169)

Indeed, straightforward calculations give as output

/h—t
ay

C/

- §t*lwmﬂ ((Ophwa = Ovhya) ng + (Oahpy — Ophau) Ny

— (auhyg — ayhuﬁ) Na — (aahg,, — aghay) 77“) y (170)

/
aé)h_t = %Tﬂu‘aﬂ (huahuﬁ - huﬁhva) ) (171)

where the tensor T#¥1*# is given in (7). In consequence,
we obtained a possible form of the first-order deformation
for the cross-interactions between the Pauli-Fierz theory
and the tensor field ¢,,,,3 as follows:

/h—t _ _rh—t /h—t th—t
a =ay " ta; “HFay

(172)
where the quantities in the right-hand side of (172) are
expressed by (169)—(171). However, a’*~t is trivial in the
context of the overall non-integrated density a®~t of the
first-order deformation in the sense that it is in a trivial
class of the local cohomology of the free BRST differential
HO (s|d). Indeed, one can check that it can be put in a
s-exact modulo d form

- 1 o L o
"t = s (30 M — 51 W (hapns — M)

1
+§t*wlaﬂ (huahus — huﬁhm)) + 90", (173)

and so it can be eliminated from a"~* by setting

¢ =0. (174)

7 The possibility "0, C,)" was excluded from ad™" as

it is trivial, being equal to -y (f%/n*anwl”), such that it can

be removed from a2~* by choosing ¢’ = 0.
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The second piece in (167), which is clearly non-trivial,
appears to be more interesting. Indeed, let us fix the trivial
(v-exact) contribution from the right-hand side of (167) to

C// ﬂ
b2 = ?n*a ‘ﬁhOp{?’]’y, (175)
which is equivalent to starting from
ay"t = " () " (176)

Then it yields the component of antighost one as solution
H#

h—t Oy w"” in the form

to the equation day" " + ya/

a" = 2" (Db + Oaliyn — Onhpa) 1, (177)
where the notation ¢*#¢ is explained in (40). Next, we pass
to the equation

Oks

"h— 1
h t:auw ,

5a " 4 yay (178)

where
B C// o
daht = —?T“ (Ophax + Oahyx — Oahua)n,  (179)

with T#* given in (8). In the sequel we will show that there
are no solutions to (178). Our procedure goes as follows.
Suppose that there exist solutions aghft to (178). Using the
formula (179), it follows that such an af)”~* must be linear
in the tensor field ¢,,, |, quadratic in the Pauli-Fierz field,
and second-order in the derivatives. Integrating by parts
in the corresponding functional constructed from aghft
allows us to move the derivatives such as to act only on
the Pauli-Fierz fields, and therefore to work with

ag" "t = "evIeBaln | (h9Oh, OhON) (180)

where the above notation signifies that aiiglaﬂ
combination of the generic polynomials between parenthe-
ses (with the mixed symmetry of the tensor field ;|4 3)-
By direct computation we get

is a linear

Jaght = o (4 yvalty ) (181)
—4c"r]am”8“a2‘;‘a5 + c”t””laﬁyagry‘laﬁ,
where
VA o = Gpjas (RO, DRODN, DORIN) , (182)

with 7 being a generic notation for the Pauli-Fierz ghost

Ny As §a'l’h7t contains no ghosts from the ¢,,,3-sector,

/th—t

we require that ya has the property

auahn

lin. .5 (h99h, Ohdh) = 0,

(183)
such that

h— li li
Yaght = o (4P Al ) Al s (184)
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Simple calculations in (179) give

S0yt = opt + "IPR, o (0h0dn, 90, nddoh) .

(185)
Inserting (184) and (185) in (178) and observing that only
bg‘;la 5 contains terms that are third-order in the derivatives
of the Pauli-Fierz fields, we conclude that the existence

of aghft is completely dictated by the behavior of bii‘;la 5
t

More precisely, a’o/hf exists if and only if the part of the
type nddoh from b23|a 5 vanishes identically and /or can be
written like the d-variation of something like Oh*¢n. Direct
computation produces the part from b}iﬁla 3 of order three
in the derivatives of the Pauli-Fierz fields in the form

lin
buvias

~ "0 (06, (0,0 hpey + 000 hpy — Ohgy — 0a0,h)

(n0dOh)

1
B 5061/‘704# (0°0"hpy — Oh) + 050y hay

+(a+— Bu+—v)
—(,6<—>a,ﬂ—>M,V—>V)

_(M(—>V,Oé—>0(,ﬂ—>ﬁ)), (186)

and it neither vanishes identically nor is proportional with
] (8,\h;#), as it can be observed from the expression (124)
of the functions that define the field equations for the Pauli—
Fierz field. The rest of the terms from (186) are obtained
from the first ones by making the indicated index changes.
In conclusion, we must also take

=0 (187)

in (176), so ab~* = 0.

6.5 Thecase I =1

Now, we analyze the next possibility, namely I = 1in (145):

h—t h—t

"t =ad 7t 4 ah (188)

where a?~" must be searched among the non-trivial solu-

tions to the equation 'ya?*t = 0, which are offered by

At ({19, [0, [Fyr o s )

xw! (n#»a[unu]) ) (189)
where the elements of pure ghost number one are
(77;u 8[;”71/]) . (190)

On the one hand, the assumption on the maximum deriva-
tive order of the interacting Lagrangian being equal to
two prevents the coefficients a}f_t to depend on either the

curvature tensors or their spacetime derivatives. On the
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other hand, alll_t can involve only the antifields ¢*#~lo8
and their spacetime derivatives, because otherwise, as w'!
includes only the Pauli-Fierz ghosts, it would not lead to
cross-interactions between the fields ¢,,,|o3 and h,,,. Mov-
ing in addition the derivatives from these antifields such
as to act only on the elements (190) from a"~* and relying
again on the assumption of the maximum derivative order,
we eventually remain with one possibility® (up to y-exact
quantities)

h—t
ay

-~ t*,ul/|ozﬁ (U#aa[unﬁ] — O'Hﬁa[y/r]a] + O'yﬁa[#noc]
— Uuaa[unﬁ])
_ 4t*y’68[y775] =0, (191)

which vanishes identically due to the symmetry property
in (40) of the simple trace of the antifield t*#¥|%,

6.6 Thecase I =0

As a27" in (191) vanishes, we remain with one more

case, namely where a®~* reduces to its antighost number
Zero piece
ahit = ag_t ([tuukxﬁ]v [h;w]) s (192)
which is subject to the equation
vag ™t = 8w (193)

As we have discussed in Sect. 5, there are two types of
solutions to (193). The first one corresponds to w* = 0
and is given by arbitrary polynomials that mix the cur-
vature tensor (13) and its spacetime derivatives with the
linearized Riemann tensor (125) and its derivatives, which
are however excluded from the condition on the maximum
derivative order of af~* (their derivative order is at least
four). The second one is associated with w* # 0, it being
understood that we discard the divergence-like solutions
ag™" = 9,2" and preserve the maximum derivative or-
der restriction. Denoting the Fuler-Lagrange derivatives
of ag_t by BHvlab = 5ag_t/5tu,,‘aﬁ and respectively by
DM = §ay™"/6h,,, and using the formula (46) together
with the first definition in (131), (193) implies that

9, B8 =0, 9,D" = 0. (194)
The tensors B**|1%% and D are imposed to contain at
most two derivatives and to have the mixed symmetry
of t,,)ap and respectively of h,,. Meanwhile, they must

yield a Lagrangian a(})’_t that effectively couples the two
sorts of fields, so B*1%8 and D effectively depend on Ry
and respectively ont,,,|3. According to the considerations

8 The identity t*lev1918 — 0 forbids the appearance of solu-
tions proportional to Levi-Civita symbols in any D > 5 dimen-
sion.
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from Sect.2 and Sect.6.1 (see (33) and (34), and (127)
and (128)), the solutions to (194) are of the type’

h—t
6(10 = B'Lwlaﬁ _ 3[)87@“1/;)\04[3"/7
&uu\a,@
h—t
00 _ puv _ Da0dHo VP (195)
Ohuy

where @#7P198Y and $HIV8 depend only on the undifferen-
tiated fields hy, and t,,o3 (otherwise, the corresponding
ab™" would be more than second-order in the derivatives),
with grvelesy having the mixed symmetry of the curvature
tensor FHvPlaBy and drelvB that of the linearized Riemann
tensor. From now on we proceed along the lines employed
in the Sect.5.3. In view of this, we introduce a deriva-
tion on the algebra of non-integrated densities depending
on t,u|ap, huw and on their derivatives, that counts the
powers of the fields and their derivatives,

0
O tunlag)

N = Z ((8ﬂl o '8Mntlﬂ"a/3) ) (aﬂ

0

D) 7 ...%nhw)) ., (196)

and we observe that the action of N on an arbitrary non-
integrated density @ ([t (as]s [Pun]) is
ou ou

M 5hy

+ 01t (197)

where 0u/6t,,)ap and 0u/dh,, denote the variational
derivatives of 4. In the case where @ is a homogeneous
polynomial of order p > 0 in the fields and their deriva-
tives, we have N4 = p@, and so

1 5i St 1
St — o, )
p(“”'a’%t M 6h;w)+a# (pr> (198)

pvlaB

u =

As ag_t can always be decomposed as a sum of homoge-
neous polynomials of various orders, it is enough to analyze
the (193) for a fixed value of p. Putting @ = a}~" in (198)
and inserting (195) in the associated relation, we can write

1 - -
b=t = ; (tw,aﬁapavqsw‘aﬂv + hwaaaﬁqsm‘”ﬁ) +0, 7.

(199)
Moving the derivatives from @ in (199) and recalling the
mixed symmetries of @#*°1*8Y and drF | we infer that

agit = leWﬂlaﬁ'yéwplam + kQKualuﬁéwalyﬁ + 8uiuv
(200)

9 The solutions involving the constant tensors B*/1%8 ~
(U“O‘U”’G — U”Ba”o‘) and D*” ~ o"" give cosmological terms
and have already been considered in the above. They are not
eligible anyway in the present context, which exclusively focuses
on the cross-interactions between the two sorts of fields.
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with k1 = 1/9p and ko = —1/2p. By computing the action
of v on (200) and following a reasoning similar to that
applied between the formulas (103) and (111), we obtain
that p = 2 and

ag™t = KT hyq. (201)

As the above agft vanishes on the stationary surface (6)
of the field equations for the tensor t,,,|4s, it is trivial in

HO (s|d). Indeed, by direct computation we have

T S

(202)

so it can be removed from the first-order deformation
by choosing

E =0. (203)

Putting together the results contained in this section,
we can state that S{’*t =0 and so
Sy = SpTh gt (204)
where ST is the first-order deformation of the solution
to the master equation for the Pauli-Fierz theory and S} "
is given in the right-hand side of (116). The consistency of
S1 at the second order in the coupling constant is governed
by (57), where (S{Fh, 5771 =0=(57"5]""), and thus
we have that S5° =0 = S5~", while Sy " is highly non-
trivial and is known to describe the quartic vertex of the
Einstein—Hilbert action, as well as the second-order contri-
butions to the gauge transformations and to the associated
non-abelian gauge algebra. The vanishing of S il*t and ngt
further leads, via the equations that stipulate the higher-
order deformation equations, to the result that actually

Spt=0, k> 1. (205)

The main conclusion of this section is that, under the
general conditions of smoothness, locality, Lorentz covari-
ance and Poincaré invariance of the deformations, combined
with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-
trivial cross-couplings between the Pauli-Fierz field and
the massless tensor field with the mixed symmetry of the
Riemann tensor. The only pieces that can be added to
the action (119) are given by the cosmological term for
the tensor t,,,|o3 and, naturally, by the self-interactions of
the Pauli-Fierz field, which produce the Einstein—Hilbert
action, invariant under diffeomorphisms.

7 Interactions with matter fields

In the final part of this paper we show that the mass-
less tensor field with the mixed symmetry of the Riemann
tensor cannot be coupled in a consistent, non-trivial man-
ner to any matter theory such that the matter fields gain
gauge transformations. Indeed, let us consider a generic
matter theory

gmatt i) = / Pz (1) | (206)
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where the fields y* are assumed to have no non-trivial
gauge symmetries. In this situation, the BRST differential
for the action written as the sum between (1) and (206)
acts on the BRST generators according to (46)—(50) and
respectively to

7 * 7 * 5L£
vy' =0, yyi =0, dy' =0, dy; = v (207)
where
pgh (') =0 =pgh(y;), agh (') =0, agh(y;) =1,
(208)

and y; denote the antifields of the matter fields. The pres-
ence of the matter theory simply adds to H () discussed
in Sect.5.1 the dependence on y', y; and their space-
time derivatives, which lie at pure ghost number zero,
[v'], [yf] € H° (v), and therefore we still have H2*1 () =
0. From (207) it is clear that the cross-interactions between
the tensor field ., and the matter fields y® at the first
order in the coupling constant can be produced just by a
first-order deformation of the master equation that stops at
antighost number one, at~matt = =Mt 4 gf=matt where
vati™™ = (0. However, as H* (7) is trivial, this fact implies
that aj~™"* is trivial and consequently the matter fields
cannot gain gauge invariance. We remain with the sole
possibility that a'=™m8% = qf~™" with yag ™" = 9,q",
whose solutions, once we add the restriction on the maxi-
mum derivative order of the cross-couplings being equal to
two, are spanned by polynomials that are simultaneously
linear in the curvature tensor (13) and of any order in the
undifferentiated matter fields.

8 Conclusion

The general conclusion of this paper is that the powerful
reformulation of interactions in gauge theories in terms of
the local BRST cohomology reveal that the massless ten-
sor field with the mixed symmetry of the Riemann tensor
admits no consistent self-interactions and, in the mean-
time, cannot be coupled in a consistent, non-trivial man-
ner to the massless spin-two field, described in the free
limit by the Pauli-Fierz theory. We also argued that the
attempt to couple such a mixed symmetry type tensor
to purely matter theories produces no gauge transforma-
tions with respect to the matter field sector. Our analysis
was constantly based on the assumptions that the result-
ing deformations are smooth, local, Lorentz-covariant and
Poincaré-invariant and on the natural requirement that the
maximum derivative order of the interacting Lagrangian
is equal to two. It is possible that the relaxation of the
last condition yields non-trivial, consistent interactions, at
least with the massless spin-two fields, in which case the
first-order formulation [13,14] of such a tensor field would
probably be a happier starting point.
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